Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning end-to-end application QoS from openflow switch statistics
RISE - Research Institutes of Sweden, ICT, SICS. Federal University of Uberlandia, Brazil; KTH Royal Institute of Technology, Sweden.
RISE - Research Institutes of Sweden, ICT, SICS. KTH Royal Institute of Technology, Sweden.ORCID-id: 0000-0001-6039-8493
2017 (Engelska)Ingår i: 2017 IEEE Conference on Network Softwarization: Softwarization Sustaining a Hyper-Connected World: en Route to 5G, NetSoft 2017, Institute of Electrical and Electronics Engineers Inc. , 2017Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We use statistical learning to estimate end-to-end QoS metrics from device statistics, collected from a server cluster and an OpenFlow network. The results from our testbed, which runs a video-on-demand service and a key-value store, demonstrate that the learned models can estimate QoS metrics like frame rate or response time with errors bellow 10% for a given client. Interestingly, we find that service-level QoS metrics seem "encoded" in network statistics and it suffices to collect OpenFlow per port statistics to achieve accurate estimation at small overhead for data collection and model computation.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2017.
Nyckelord [en]
Machine Learning, Network Analytics, Open-Flow, Quality of Service, Software-Defined Networking, Learning systems, Software defined networking, Statistics, Video on demand, Accurate estimation, End-to-end application, Model computation, Open flow, Openflow networks, Openflow switches, Statistical learning, Video on demand services
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:ri:diva-38065DOI: 10.1109/NETSOFT.2017.8004198Scopus ID: 2-s2.0-85029372779ISBN: 9781509060085 (tryckt)OAI: oai:DiVA.org:ri-38065DiVA, id: diva2:1296509
Konferens
2017 IEEE Conference on Network Softwarization, NetSoft 2017, 3 July 2017 through 7 July 2017
Tillgänglig från: 2019-03-15 Skapad: 2019-03-15 Senast uppdaterad: 2019-03-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Stadler, Rolf

Sök vidare i DiVA

Av författaren/redaktören
Stadler, Rolf
Av organisationen
SICS
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 3 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9