Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Management and analysis of big graph data: Current systems and open challenges
Leipzig University, Germany.
Leipzig University, Germany.
RISE - Research Institutes of Sweden, ICT, SICS.
Leipzig University, Germany.
2017 (Engelska)Ingår i: Handbook of Big Data Technologies, Springer International Publishing , 2017, s. 457-505Kapitel i bok, del av antologi (Övrigt vetenskapligt)
Abstract [en]

Many big data applications in business and science require the management and analysis of huge amounts of graph data. Suitable systems to manage and to analyze such graph data should meet a number of challenging requirements including support for an expressive graph data model with heterogeneous vertices and edges, powerful query and graph mining capabilities, ease of use as well as high performance and scalability. In this chapter, we survey current system approaches for management and analysis of "big graph data". We discuss graph database systems, distributed graph processing systems such as Google Pregel and its variations, and graph dataflow approaches based on Apache Spark and Flink. We further outline a recent research framework called Gradoop that is build on the so-called Extended Property Graph Data Model with dedicated support for analyzing not only single graphs but also collections of graphs. Finally, we discuss current and future research challenges.

Ort, förlag, år, upplaga, sidor
Springer International Publishing , 2017. s. 457-505
Nyckelord [en]
Resource Description Framework, Graph Data, Graph Database, Work Node, Data Allocation
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-38088DOI: 10.1007/978-3-319-49340-4_14Scopus ID: 2-s2.0-85019929220ISBN: 9783319493404 (tryckt)ISBN: 9783319493398 (tryckt)OAI: oai:DiVA.org:ri-38088DiVA, id: diva2:1295523
Tillgänglig från: 2019-03-12 Skapad: 2019-03-12 Senast uppdaterad: 2019-03-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus
Av organisationen
SICS
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 10 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9