Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells
Tampere University, Finland.
University of Bergen, Norway.
KTH Royal institute of technology, Sweden.
Tampere University, Finland.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Biofabrication, ISSN 1758-5082, E-ISSN 1758-5090, Vol. 11, nr 3Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A challenge in the extrusion-based bioprinting is to find a bioink with optimal biological and physicochemical properties. The aim of this study was to evaluate the influence of wood-based cellulose nanofibrils (CNF) and bioactive glass on the rheological properties of gelatin-alginate bioinks and the initial responses of bone cells embedded in these inks. CNF modulated the flow behavior of the hydrogels, thus improving their printability. Chemical characterization by SEM-EDX and ion release analysis confirmed the reactivity of the BaG in the hydrogels. The cytocompatibility of the hydrogels was shown to be good, as evidenced by the viability of human osteoblast-like cells (Saos-2) in cast hydrogels. For bioprinting, 4-layer structures were printed from cell-containing gels and crosslinked with CaCl2. Viability, proliferation and alkaline phosphatase activity (ALP) were monitored over 14 days. In the BaG-free gels, Saos-2 cells remained viable, but in the presence of BaG the viability and proliferation decreased in correlation with the increased viscosity. Still, there was a constant increase in the ALP activity in all the hydrogels. Further bioprinting experiments were conducted using human bone marrow-derived mesenchymal stem cells (hBMSCs), a clinically relevant cell type. Interestingly, hBMSCs tolerated the printing process better than Saos-2 cells and the ALP indicated BaG-stimulated early osteogenic commitment. The addition of CNF and BaG to gelatin-alginate bioinks hold great potential for bone tissue engineering applications.

Ort, förlag, år, upplaga, sidor
2019. Vol. 11, nr 3
Nyckelord [en]
Saos-2, bioink, bioprinting, bone tissue engineering, cellulose nanofibril, mesenchymal stem cell, viscosity
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-37819DOI: 10.1088/1758-5090/ab0692PubMedID: 30754034OAI: oai:DiVA.org:ri-37819DiVA, id: diva2:1292976
Tillgänglig från: 2019-03-01 Skapad: 2019-03-01 Senast uppdaterad: 2019-07-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Syverud, Kristin

Sök vidare i DiVA

Av författaren/redaktören
Syverud, Kristin
Av organisationen
PFI
I samma tidskrift
Biofabrication
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 18 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7