Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Working Group on Health Measurement of Open Source Projects and Ecosystems
Utrecht Unievrsity, The Netherlands.
Johannes Kepler Universität Linz, Austria.
RISE - Research Institutes of Sweden, ICT, SICS.ORCID-id: 0000-0002-5157-8131
Athens University of Economics and Business, Greece.
2018 (Engelska)Ingår i: Software Business, Platforms, and Ecosystems: Fundamentals of Software Production, 2018Konferensbidrag, Muntlig presentation med publicerat abstract (Övrigt vetenskapligt)
Abstract [en]

Open source projects and ecosystems can be studied due to the public availability of their data. The main reasons for studying this data is to collect operationalizable metrics that can be used for the improvement of the project or ecosystem. We can for instance use these metrics to do prediction, study adoption rates, and perform scenario modeling. Presently, in literature, the reigning health factors that are acknowledged are Robustness, Productivity, Niche creation. It is also common to look at ecosystem health from two dimensions: the partner/network level versus the system/project level. Each dimension provides a unique perspective on open source health and enables improvement in a different manner: one focuses on the activity within the platform, whereas the other focuses on the activity outside of it. Typically, in open source ecosystem health research the metrics are characterized along several axes: they are evaluated for availability, collectability, generalizability, comparability, user friendliness, etc. Examples of metrics are interactions between developers, clones, branches, and numbers of commits. We also find that metrics that are typically easy to collect are not very meaningful. Also, the need arises for a meaningful compact subset of metrics, instead of throwing the kitchen sink at evaluation projects. Also, we suspect that “typical” developer behaviors can be extracted from the correlations between different metrics. Finally, we find that the goal-question-metric approach is insufficiently employed in the study of the health of ecosystems. One of the bigger challenges in assessing ecosystem health is the myriad of perspectives on ecosystems. For instance, we can look at network health versus economic health. Furthermore, ecosystems themselves are made up of ecosystems, and we need to establish beforehand what the best manner is of decomposing an ecosystem.

Ort, förlag, år, upplaga, sidor
2018.
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:ri:diva-37632OAI: oai:DiVA.org:ri-37632DiVA, id: diva2:1283346
Konferens
Dagstuhl Seminar 18182
Tillgänglig från: 2019-01-29 Skapad: 2019-01-29 Senast uppdaterad: 2019-02-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Papatheocharous, Efi

Sök vidare i DiVA

Av författaren/redaktören
Papatheocharous, Efi
Av organisationen
SICS
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 14 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7