Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Distributional term set expansion
RISE - Research Institutes of Sweden, ICT, SICS.
RISE - Research Institutes of Sweden, ICT, SICS.ORCID-id: 0000-0001-5100-0535
2018 (Engelska)Ingår i: LREC 2018 - 11th International Conference on Language Resources and Evaluation, 2018, s. 2554-2558Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper is a short empirical study of the performance of centrality and classification based iterative term set expansion methods for distributional semantic models. Iterative term set expansion is an interactive process using distributional semantics models where a user labels terms as belonging to some sought after term set, and a system uses this labeling to supply the user with new, candidate, terms to label, trying to maximize the number of positive examples found. While centrality based methods have a long history in term set expansion (Sarmento et al., 2007; Pantel et al., 2009), we compare them to classification methods based on the the Simple Margin method, an Active Learning approach to classification using Support Vector Machines (Tong and Koller, 2002). Examining the performance of various centrality and classification based methods for a variety of distributional models over five different term sets, we can show that active learning based methods consistently outperform centrality based methods.

Ort, förlag, år, upplaga, sidor
2018. s. 2554-2558
Nyckelord [en]
Active Learning, Distributional Semantics, Lexicon Acquisition, Term Set Expansion, Word Embeddings, Artificial intelligence, Semantics, Embeddings, Set expansions, Iterative methods
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-37335Scopus ID: 2-s2.0-85059894892ISBN: 9791095546009 (tryckt)OAI: oai:DiVA.org:ri-37335DiVA, id: diva2:1281522
Konferens
11th International Conference on Language Resources and Evaluation, LREC 2018, 7 May 2018 through 12 May 2018
Tillgänglig från: 2019-01-22 Skapad: 2019-01-22 Senast uppdaterad: 2019-01-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Person

Sahlgren, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Sahlgren, Magnus
Av organisationen
SICS
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 51 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf