Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic blood glucose prediction with confidence using recurrent neural networks
Chalmers University of Technology, Sweden.ORCID-id: 0000-0002-5032-4367
University of Gothenburg, Sweden.
Sahlgrenska University Hospital, Sweden.
Chalmers University of Technology, Sweden.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: CEUR Workshop Proceedings, 2018, s. 64-68Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Low-cost sensors continuously measuring blood glucose levels in intervals of a few minutes and mobile platforms combined with machine-learning (ML) solutions enable personalized precision health and disease management. ML solutions must be adapted to different sensor technologies, analysis tasks and individuals. This raises the issue of scale for creating such adapted ML solutions. We present an approach for predicting blood glucose levels for diabetics up to one hour into the future. The approach is based on recurrent neural networks trained in an end-to-end fashion, requiring nothing but the glucose level history for the patient. The model outputs the prediction along with an estimate of its certainty, helping users to interpret the predicted levels. The approach needs no feature engineering or data pre-processing, and is computationally inexpensive.

Ort, förlag, år, upplaga, sidor
2018. s. 64-68
Nyckelord [en]
Blood, Data handling, Forecasting, Glucose, Health care, Learning systems, Blood glucose level, Data preprocessing, Disease management, Feature engineerings, Low-cost sensors, Mobile platform, Model outputs, Sensor technologies, Recurrent neural networks
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-35908Scopus ID: 2-s2.0-85051031690OAI: oai:DiVA.org:ri-35908DiVA, id: diva2:1261470
Konferens
3rd International Workshop on Knowledge Discovery in Healthcare Data, KDH@IJCAI-ECAI 2018, 13 July 2018
Tillgänglig från: 2018-11-07 Skapad: 2018-11-07 Senast uppdaterad: 2023-06-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Scopushttp://ceur-ws.org/Vol-2148/paper10.pdf

Person

Martinsson, JohnMogren, Olof

Sök vidare i DiVA

Av författaren/redaktören
Martinsson, JohnMogren, Olof
Av organisationen
SICS
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 806 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf