Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates
KTH Royal Institute of Technology, Sweden.
RISE - Research Institutes of Sweden, Bioekonomi, ETC Energy Technology Center.ORCID-id: 0000-0002-8264-4736
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
2018 (Engelska)Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 229, s. 314-325Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Mixed plastics and papers are two of the main fractions in municipal solid waste which is a critical environmental issue today. Recovering energy and chemicals from this waste stream by pyrolysis is one of the favorable options to achieve a circular economy. While pyrolysis products from plastics are mainly hydrocarbons, pyrolysis products from paper/biomass are highly oxygenated. The different nature of the two pyrolysis products results in different treatments and applications as well as economic values. Therefore, separation of these two products by multi-step pyrolysis based on their different decomposition temperatures could be beneficial for downstream processes to recover materials, chemicals and/or energy. In this work, stepwise pyrolysis of mixed plastics and paper waste was performed in a batch type fixed bed reactor using two different pyrolysis temperatures. Neat plastic materials (polystyrene, polyethylene) and cellulose mixtures were used as starting materials. Then, the same conditions were applied to a mixed plastics and paper residue stream derived from paper recycling process. The condensable products were analyzed by GC/MS. It was found that pyrolysis temperatures during the first and second step of 350 and 500 °C resulted in a better separation of the oxygenated and hydrocarbon condensates than when a lower pyrolysis temperature (300 °C) was used in the first step. The products from the first step were derived from cellulose with some heavy fraction of styrene oligomers, while the products from the second step were mainly hydrocarbons derived from polystyrene and polyethylene. This thus shows that stepwise pyrolysis can separate the products from these materials, although with some degree of overlapping products. Indications of interaction between PS and cellulose during stepwise pyrolysis were observed including an increase in char yield, a decrease in liquid yield from the first temperature step and changes in liquid composition, compared to stepwise pyrolysis of the two materials separately. A longer vapor residence time in the second step was found to help reducing the amount of wax derived from polyethylene. Results from stepwise pyrolysis of a real waste showed that oxygenated and acidic products were concentrated in the liquid from the first step, while the product from the second step contained a high portion of hydrocarbons and had a low acid number.

Ort, förlag, år, upplaga, sidor
2018. Vol. 229, s. 314-325
Nyckelord [en]
Cellulose, Hydrocarbons, Oxygenated products, Paper reject, Plastics, Stepwise pyrolysis
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-34564DOI: 10.1016/j.apenergy.2018.08.006Scopus ID: 2-s2.0-85051140419OAI: oai:DiVA.org:ri-34564DiVA, id: diva2:1238469
Anmärkning

 Funding details: Energimyndigheten; Funding details: KIMST, Korea Institute of Marine Science and Technology promotion;

Tillgänglig från: 2018-08-13 Skapad: 2018-08-13 Senast uppdaterad: 2018-08-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Sandström, Linda

Sök vidare i DiVA

Av författaren/redaktören
Sandström, Linda
Av organisationen
ETC Energy Technology Center
I samma tidskrift
Applied Energy
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 59 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7