Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A MILP-based heuristic for a commercial train timetabling problem
RISE - Research Institutes of Sweden, ICT, SICS.ORCID-id: 0000-0003-4456-9453
RISE - Research Institutes of Sweden, ICT, SICS.ORCID-id: 0000-0002-0236-783x
Linköping University, Sweden.
2017 (Engelska)Ingår i: Transp. Res. Procedia, 2017, s. 569-576Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Using mathematical methods to support the yearly timetable planning process has many advantages. Unfortunately, the train timetabling problem for large geographical areas and many trains is intractable for optimization models alone. In this paper, we therefore present a MILP-based heuristic that has been designed to generate good-enough timetables for large geographical areas and many trains. In the incremental fix and release heuristic (IFRH), trains are added to the timetable in batches. For each batch of trains, a reduced timetable problem is solved using a mathematical integer program and CPLEX. Based on the solution, the binary variables defining meeting locations and stops are fixed, and the next batch of trains is added to the timetable. If previously fixed variables make the problem infeasible, a recovery algorithm iteratively releases fixed variables to regain feasibility. The paper also introduces a simple improvement heuristic (IH) that uses the same idea of working with batches of trains. The heuristics are tested on a real case-study from Sweden consisting of both small problem instances (approximately 300 trains and 1400 possible interactions) and large problem instances (approximately 600 trains and 5500 possible interactions). IFRH returns a feasible timetable within 30 minutes for all problem instances, and after running IH the optimality gaps are less than 5%. Meanwhile, if CPLEX is used without the heuristic framework to solve the total optimization problem, a feasible timetable is not returned within 2 hours for the large problem instances. © 2017 The Authors.

Ort, förlag, år, upplaga, sidor
2017. s. 569-576
Nyckelord [en]
heuristic, MILP, optimization, Train timetabling
Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-33204DOI: 10.1016/j.trpro.2017.12.118Scopus ID: 2-s2.0-85039939622OAI: oai:DiVA.org:ri-33204DiVA, id: diva2:1179231
Konferens
Transportation Research Procedia
Tillgänglig från: 2018-01-31 Skapad: 2018-01-31 Senast uppdaterad: 2023-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Gestrelius, SaraAronsson, Martin

Sök vidare i DiVA

Av författaren/redaktören
Gestrelius, SaraAronsson, Martin
Av organisationen
SICS
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 55 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf