Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning from Network Device Statistics
RISE - Research Institutes of Sweden, ICT, SICS. KTH Royal Institute of Technology, Sweden.ORCID-id: 0000-0001-6039-8493
UFU Federal University of Uberlândia, Brazil.
KTH Royal Institute of Technology, Sweden.
2017 (Engelska)Ingår i: Journal of Network and Systems Management, ISSN 1064-7570, E-ISSN 1573-7705, Vol. 25, nr 4, s. 672-698Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We estimate end-to-end service metrics from network device statistics. Our approach is based upon statistical, supervised learning, whereby the mapping from device-level to service-level metrics is learned from observations, i.e., through monitoring the system. The approach enables end-to-end performance prediction without requiring an explicit model of the system, which is different from traditional engineering techniques that use stochastic modeling and simulation. The fact that end-to-end service metrics can be estimated from local network statistics with good accuracy in the scenarios we consider suggests that service-level properties are “encoded” in network-level statistics. We show that the set of network statistics needed for estimation can be reduced to a set of measurements along the network path between client and service backend, with little loss in estimation accuracy. The reported work is largely experimental and its results have been obtained through testbed measurements from a video streaming service and a KV store over an OpenFlow network .

Ort, förlag, år, upplaga, sidor
2017. Vol. 25, nr 4, s. 672-698
Nyckelord [en]
End-to-end performance Prediction, Feature selection, Machine learning, Network analytics, Network management, OpenFlow, Statistical learning, Feature extraction, Learning systems, Stochastic models, Stochastic systems, Video streaming, End-to-end performance, End-to-end service, Network statistics, Testbed measurements, Traditional engineerings, Video streaming services, Statistics
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:ri:diva-31335DOI: 10.1007/s10922-017-9426-zScopus ID: 2-s2.0-85029795404OAI: oai:DiVA.org:ri-31335DiVA, id: diva2:1147605
Tillgänglig från: 2017-10-06 Skapad: 2017-10-06 Senast uppdaterad: 2021-11-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Stadler, Rolf

Sök vidare i DiVA

Av författaren/redaktören
Stadler, Rolf
Av organisationen
SICS
I samma tidskrift
Journal of Network and Systems Management
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 45 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf