Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated Regression Testing Using Constraint Programming
Simula Research Laboratory, Norway.
RISE., Swedish ICT, SICS, Computer Systems Laboratory.ORCID-id: 0000-0003-3079-8095
Cisco, Norway.
Simula Research Laboratory, Norway.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Proceedings of the Twenty-Eighth AAAI Conference on Innovative Applications (IAAI-16), AAAI Press, 2016, s. 4010-4015Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In software validation, regression testing aims to check the absence of regression faults in new releases of a software system. Typically, test cases used in regression testing are executed during a limited amount of time and are selected to check a given set of user requirements. When testing large systems, the number of regression tests grows quickly over the years, and yet the available time slot stays limited. In order to overcome this problem, an approach known as test suite reduction (TSR), has been developed in software engineering to select a smallest subset of test cases, so that each requirement remains covered at least once. However solving the TSR problem is difficult as the underlying optimization problem is NP-hard, but it is also crucial for vendors interested in reducing the time to market of new software releases. In this paper, we address regression testing and TSR with Constraint Programming (CP). More specifically, we propose new CP models to solve TSR that exploit global constraints, namely NValue and GCC. We reuse a set of preprocessing rules to reduce a priori each instance, and we introduce a structure-aware search heuristic. We evaluated our CP models and proposed improvements against existing approaches, including a simple greedy approach and MINTS, the state-of-the-art tool of the software engineering community. Our experiments show that CP outperforms both the greedy approach and MINTS when it is interfaced with MiniSAT, in terms of percentage of reduction and execution time. When MINTS is interfaced with CPLEX, we show that our CP model performs better only on percentage of reduction. Finally, by working closely with validation engineers from Cisco Systems, Norway, we integrated our CP model into an industrial regression testing process.

Ort, förlag, år, upplaga, sidor
AAAI Press, 2016. s. 4010-4015
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-30102OAI: oai:DiVA.org:ri-30102DiVA, id: diva2:1128018
Konferens
Twenty-Eighth Conference on Innovative Applications of Artificial Intelligence (IAAI-16), February 12-17, 2016, Phoenix, USA
Tillgänglig från: 2017-07-21 Skapad: 2017-07-21 Senast uppdaterad: 2023-05-05Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

https://www.aaai.org/ocs/index.php/IAAI/IAAI16/paper/view/12116

Person

Carlsson, Mats

Sök vidare i DiVA

Av författaren/redaktören
Carlsson, Mats
Av organisationen
Computer Systems Laboratory
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 159 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf