Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data Integration Using Machine Learning
Chalmers University of Technology, Sweden; ICore Solutions, Sweden.
Chalmers University of Technology, Sweden; ICore Solutions, Sweden.
RISE., Swedish ICT, SICS, Software and Systems Engineering Laboratory.ORCID-id: 0000-0003-2017-7914
2016 (Engelska)Ingår i: 2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW), 2016, s. 313-322, artikel-id 7584357Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Today, enterprise integration and cross-enterprise collaboration is becoming evermore important. The Internet of things, digitization and globalization are pushing continuous growth in the integration market. However, setting up integration systems today is still largely a manual endeavor. Most probably, future integration will need to leverage more automation in order to keep up with demand. This paper presents a first version of a system that uses tools from artificial intelligence and machine learning to ease the integration of information systems, aiming to automate parts of it. Three models are presented and evaluated for precision and recall using data from real, past, integration projects. The results show that it is possible to obtain F0.5 scores in the order of 80% for models trained on a particular kind of data, and in the order of 60%-70% for less specific models trained on a several kinds of data. Such models would be valuable enablers for integration brokers to keep up with demand, and obtain a competitive advantage. Future work includes fusing the results from the different models, and enabling continuous learning from an operational production system.

Ort, förlag, år, upplaga, sidor
2016. s. 313-322, artikel-id 7584357
Nyckelord [en]
Data integration, Enterprise interoperability, Machine Learning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:ri:diva-28275DOI: 10.1109/EDOCW.2016.7584357Scopus ID: 2-s2.0-84992562805ISBN: 978-1-4673-9933-3 (digital)OAI: oai:DiVA.org:ri-28275DiVA, id: diva2:1076365
Konferens
20th IEEE International Enterprise Distributed Object Computing Workshop (EDOCW 2016), September 5-9, 2016, Vienna, Austria
Tillgänglig från: 2017-02-22 Skapad: 2017-02-22 Senast uppdaterad: 2020-02-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Franke, Ulrik

Sök vidare i DiVA

Av författaren/redaktören
Franke, Ulrik
Av organisationen
Software and Systems Engineering Laboratory
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 33 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10