Driftinformation
Ett driftavbrott i samband med versionsuppdatering är planerat till 24/9-2024, kl 12.00-14.00. Under den tidsperioden kommer DiVA inte att vara tillgängligt
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated Bug Assignment: Ensemble-based Machine Learning in Large Scale Industrial Contexts
Linköping University, Sweden; Ericsson AB, Sweden.
RISE., Swedish ICT, SICS, Security Lab. Lund University, Sweden.ORCID-id: 0000-0001-7879-4371
KTH Royal Institute of Technology, Sweden; UC Berkeley, USA.
Linköping University, Sweden.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Empirical Software Engineering, ISSN 1382-3256, E-ISSN 1573-7616, Vol. 21, nr 4, s. 1533-1578Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Bug report assignment is an important part of software maintenance. In particular, incorrect assignments of bug reports to development teams can be very expensive in large software development projects. Several studies propose automating bug assignment techniques using machine learning in open source software contexts, but no study exists for large-scale proprietary projects in industry. The goal of this study is to evaluate automated bug assignment techniques that are based on machine learning classification. In particular, we study the state-of-the-art ensemble learner Stacked Generalization (SG) that combines several classifiers. We collect more than 50,000 bug reports from five development projects from two companies in different domains. We implement automated bug assignment and evaluate the performance in a set of controlled experiments. We show that SG scales to large scale industrial application and that it outperforms the use of individual classifiers for bug assignment, reaching prediction accuracies from 50 % to 89 % when large training sets are used. In addition, we show how old training data can decrease the prediction accuracy of bug assignment. We advice industry to use SG for bug assignment in proprietary contexts, using at least 2,000 bug reports for training. Finally, we highlight the importance of not solely relying on results from cross-validation when evaluating automated bug assignment.

Ort, förlag, år, upplaga, sidor
Springer US , 2016, 12. Vol. 21, nr 4, s. 1533-1578
Nyckelord [en]
software engineering, machine learning, mining software repositories, issue management
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-24448DOI: 10.1007/s10664-015-9401-9Scopus ID: 2-s2.0-84941356343OAI: oai:DiVA.org:ri-24448DiVA, id: diva2:1043529
Tillgänglig från: 2016-10-31 Skapad: 2016-10-31 Senast uppdaterad: 2022-09-15Bibliografiskt granskad

Open Access i DiVA

fulltext(1344 kB)1145 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1344 kBChecksumma SHA-512
f0e20921126ff52b93cca79e1baf6b75eed755ff38dcf43833ca9641e769808359008d36a20263c168e3ab8554cbf78bbc9760d7ddfad1d4ec0e1abfa98b063a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopushttp

Person

Borg, Markus

Sök vidare i DiVA

Av författaren/redaktören
Jonsson, LeifBorg, MarkusRuneson, Per
Av organisationen
Security Lab
I samma tidskrift
Empirical Software Engineering
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1145 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1439 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf