Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Probabilistic Approach to Aggregating Anomalies for Unsupervised Anomaly Detection with Industrial Applications
RISE., Swedish ICT, SICS.ORCID-id: 0000-0002-9890-4918
RISE., Swedish ICT, SICS, Decisions, Networks and Analytics lab.ORCID-id: 0000-0001-8577-6745
2015 (Engelska)Ingår i: Proceedings of the 28th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2015), 2015, 7, s. 434-439Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents a novel, unsupervised approach to detecting anomalies at the collective level. The method probabilistically aggregates the contribution of the individual anomalies in order to detect significantly anomalous groups of cases. The approach is unsupervised in that as only input, it uses a list of cases ranked according to its individual anomaly score. Thus, any anomaly detection algorithm can be used for scoring individual anomalies, both supervised and unsupervised approaches. The applicability of the proposed approach is shown by applying it to an artificial data set and to two industrial data sets — detecting anomalously moving cranes (model-based detection) and anomalous fuel consumption (neighbour-based detection).

Ort, förlag, år, upplaga, sidor
2015, 7. s. 434-439
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:ri:diva-24430Scopus ID: 2-s2.0-84958181138ISBN: 9781577357308 (tryckt)OAI: oai:DiVA.org:ri-24430DiVA, id: diva2:1043511
Konferens
28th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2015), May 18-20, 2015, Hollywood, US
Projekt
STREAMTillgänglig från: 2016-10-31 Skapad: 2016-10-31 Senast uppdaterad: 2023-05-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Scopushttp

Person

Olsson, TomasHolst, Anders

Sök vidare i DiVA

Av författaren/redaktören
Olsson, TomasHolst, Anders
Av organisationen
SICSDecisions, Networks and Analytics lab
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 138 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf