Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Kinked cracks in bonded half-planes modeled by an integral equation method
The Royal Institute of Technology.
RISE, Swerea, Swerea SICOMP AB.
1992 (engelsk)Inngår i: International Journal of Fracture, ISSN 0376-9429, E-ISSN 1573-2673, Vol. 54, nr 1, s. 65-77Artikkel i tidsskrift (Fagfellevurdert)
Abstract [en]

Based on the integral equation for resultant forces along a crack, a boundary integral equation method for the solution of kinked cracks in bonded half-planes is presented. The equation only contains a weak logarithmic singularity and is valid for every point along the crack lines. Numerical results are presented to illustrate the efficiency and reliability of the method. © 1992 Kluwer Academic Publishers.

sted, utgiver, år, opplag, sider
Kluwer Academic Publishers , 1992. Vol. 54, nr 1, s. 65-77
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-13236DOI: 10.1007/BF00040856OAI: oai:DiVA.org:ri-13236DiVA, id: diva2:973432
Tilgjengelig fra: 2016-09-22 Laget: 2016-09-22 Sist oppdatert: 2017-11-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fullteksthttp://rd.springer.com/article/10.1007%2FBF00040856
Av organisasjonen
I samme tidsskrift
International Journal of Fracture

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 52 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0