Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
DMEL: THE DIFFERENTIABLE LOG-MEL SPECTROGRAM AS A TRAINABLE LAYER IN NEURAL NETWORKS
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. Lund University, Sweden.ORCID-id: 0000-0002-5032-4367
Lund University, Sweden.
2024 (engelsk)Inngår i: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2024, s. 5005-5009Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this paper we present the differentiable log-Mel spectrogram (DMEL) for audio classification. DMEL uses a Gaussian window, with a window length that can be jointly optimized with the neural network. DMEL is used as the input layer in different neural networks and evaluated on standard audio datasets. We show that DMEL achieves a higher average test accuracy for sub-optimal initial choices of the window length when compared to a baseline with a fixed window length. In addition, we analyse the computational cost of DMEL and compare to a standard hyperparameter search over different window lengths, showing favorable results for DMEL. Finally, an empirical evaluation on a carefully designed dataset is performed to investigate if the differentiable spectrogram actually learns the optimal window length. The design of the dataset relies on the theory of spectrogram resolution. We also empirically evaluate the convergence rate to the optimal window length. 

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers Inc. , 2024. s. 5005-5009
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-74873DOI: 10.1109/ICASSP48485.2024.10446816Scopus ID: 2-s2.0-85195408870OAI: oai:DiVA.org:ri-74873DiVA, id: diva2:1895056
Konferanse
49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024. Seoul, South Korea. 14 April 2024 through 19 April 2024
Merknad

Thanks to the Swedish Foundation for Strategic Research for funding.

Tilgjengelig fra: 2024-09-04 Laget: 2024-09-04 Sist oppdatert: 2024-09-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Martinsson, John

Søk i DiVA

Av forfatter/redaktør
Martinsson, John
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 43 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0