Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimation of nonlinear forces acting on floating bodies using machine learning
RISE Research Institutes of Sweden, Säkerhet och transport, Maritima avdelningen. Aalborg University, Denmark.ORCID-id: 0000-0001-6934-634x
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0003-3272-4145
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-8577-6745
Sigma Energy & Marine, Sweden.
2023 (engelsk)Inngår i: Advances in the Analysis and Design of Marine Structures / [ed] J. W. Ringsberg, C. Guedes Soares, Boca Raton: CRC Press, 2023, s. 63-72Kapittel i bok, del av antologi (Annet vitenskapelig)
Abstract [en]

Numerical models used in the design of floating bodies routinely rely on linear hydrodynamics. Extensions for hydrodynamic nonlinearities can be approximated using e.g. Morison type drag and nonlinear Froude-Krylov forces. This paper aims to improve the approximation of nonlinear forces acting on floating bodies by using machine learning (ML). Many ML models are general function approximators and therefore suitable for representing such nonlinear correction terms. A hierarchical modelling approach is used to build mappings between higher-fidelity simulations and the linear method. The ML corrections are built up for FNPF, Euler and RANS simulations. Results for decay tests of a sphere in model scale using recurrent neural networks (RNN) are presented. The RNN algorithm is shown to satisfactory predict the correction terms if the most nonlinear case is used as training data. No difference in the performance of the RNN model is seen for the different hydrodynamic models.

sted, utgiver, år, opplag, sider
Boca Raton: CRC Press, 2023. s. 63-72
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-72114DOI: 10.1201/9781003399759ISBN: 9781003399759 (digital)OAI: oai:DiVA.org:ri-72114DiVA, id: diva2:1842078
Forskningsfinansiär
Swedish Energy Agency, 50196-1Tilgjengelig fra: 2024-03-02 Laget: 2024-03-02 Sist oppdatert: 2025-02-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Eskilsson, ClaesPashami, SepidehHolst, Anders

Søk i DiVA

Av forfatter/redaktør
Eskilsson, ClaesPashami, SepidehHolst, Anders
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 50 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0