Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hierarchical Approaches to Train Recurrent Neural Networks for Wave-Body Interaction Problems
RISE Research Institutes of Sweden, Säkerhet och transport, Maritima avdelningen.ORCID-id: 0000-0001-6934-634x
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0003-3272-4145
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-8577-6745
Sigma Energy & Marine, Sweden.
2023 (engelsk)Inngår i: The Proceedings of the 33rd International Ocean and Polar Engineering Conference, 2023, Vol. 33, artikkel-id 307Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We present a hybrid linear potential flow - machine learning (LPF-ML) model for simulating weakly nonlinear wave-body interaction problems. In this paper we focus on using hierarchical modelling for generating training data to be used with recurrent neural networks (RNNs) in order to derive nonlinear correction forces. Three different approaches are investigated: (i) a baseline method where data from a Reynolds averaged Navier Stokes (RANS) model is directly linked to data from a LPF model to generate nonlinear corrections; (ii) an approach in which we start from high-fidelity RANS simulations and build the nonlinear corrections by stepping down in the fidelity hierarchy; and (iii) a method starting from low-fidelity, successively moving up the fidelity staircase. The three approaches are evaluated for the simple test case of a heaving sphere. The results show that the baseline model performs best, as expected for this simple test case. Stepping up in the fidelity hierarchy very easily introduce errors that propagate through the hierarchical modelling via the correction forces. The baseline method was found to accurately predict the motion of the heaving sphere. The hierarchical approaches struggled with the task, with the approach that steps down in fidelity performing somewhat better of the two.

sted, utgiver, år, opplag, sider
2023. Vol. 33, artikkel-id 307
Emneord [en]
Wave-body interaction; hierarchical modelling; linear potential flow; hybrid modeling; machine learning; recurrent neural net- work.
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-72110OAI: oai:DiVA.org:ri-72110DiVA, id: diva2:1842076
Konferanse
The 33rd International Ocean and Polar Engineering Conference
Forskningsfinansiär
Swedish Energy Agency, 50196-1Tilgjengelig fra: 2024-03-02 Laget: 2024-03-02 Sist oppdatert: 2024-03-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Link

Person

Eskilsson, ClaesPashami, SepidehHolst, Anders

Søk i DiVA

Av forfatter/redaktør
Eskilsson, ClaesPashami, SepidehHolst, Anders
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 11 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0