Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An automated machine learning approach for smart waste management systems
BnearIT AB, Sweden.
Luleå University of Technology, Sweden.ORCID-id: 0000-0002-6032-6155
BnearIT AB, Sweden.
2020 (engelsk)Inngår i: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, E-ISSN 1941-0050, Vol. 16, nr 1, s. 384-392, artikkel-id 8709695Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the focus of the paper is on the problem of detection (i.e., binary classification) of emptying of a recycling container using sensor measurements. Numerous data-driven methods for solving the problem are investigated in a realistic setting where most of the events are not actual emptying. The investigated methods include the existing manually engineered model and its modification as well as conventional machines learning algorithms. The use of machine learning allows improving the classification accuracy and recall of the existing manually engineered model from 86.8% and 47.9% to 99.1% and 98.2%, respectively, when using the best performing solution. This solution uses a Random Forest classifier on a set of features based on the filling level at different given time spans. Finally, compared to the baseline existing manually engineered model, the best performing solution also improves the quality of forecasts for emptying time of recycling containers. 

sted, utgiver, år, opplag, sider
IEEE Computer Society , 2020. Vol. 16, nr 1, s. 384-392, artikkel-id 8709695
Emneord [en]
Automated machine learning (AutoML), classification algorithms, data mining, emptying detection, grid search, Smart Waste Management, Automation, Classification (of information), Containers, Decision trees, Machine learning, Recycling, Waste management, Automated machines, Binary classification, Classification accuracy, Classification algorithm, Conventional machines, Random forest classifier, Waste management systems, Learning algorithms
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-68358DOI: 10.1109/TII.2019.2915572Scopus ID: 2-s2.0-85078311758OAI: oai:DiVA.org:ri-68358DiVA, id: diva2:1817596
Tilgjengelig fra: 2023-12-06 Laget: 2023-12-06 Sist oppdatert: 2023-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Kleyko, Denis

Søk i DiVA

Av forfatter/redaktør
Kleyko, Denis
I samme tidsskrift
IEEE Transactions on Industrial Informatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 27 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0