Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hardware acceleration for recurrent neural networks
Mälardalen University, Sweden.ORCID-id: 0000-0001-5951-9374
Mälardalen University, Sweden.
2020 (engelsk)Bok (Annet vitenskapelig)
Abstract [en]

This chapter focuses on the LSTM model and is concerned with the design of a high-performance and energy-efficient solution to implement deep learning inference. The chapter is organized as follows: Section 2.1 introduces Recurrent Neural Networks (RNNs). In this section Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) network models are discussed as special kind of RNNs. Section 2.2 discusses inference acceleration with hardware. In Section 2.3, a survey on various FPGA designs is presented within the context of the results of previous related works and after which Section 2.4 concludes the chapter. 

sted, utgiver, år, opplag, sider
Institution of Engineering and Technology , 2020.
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-67475DOI: 10.1049/PBCS055E_ch2Scopus ID: 2-s2.0-85153645311ISBN: 9781785617683 (tryckt)OAI: oai:DiVA.org:ri-67475DiVA, id: diva2:1802994
Tilgjengelig fra: 2023-10-06 Laget: 2023-10-06 Sist oppdatert: 2023-10-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Sinaei, Sima

Søk i DiVA

Av forfatter/redaktør
Sinaei, Sima

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 47 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0