Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards Synthetic Data Generation of VANET Attacks for Efficient Testing
RISE Research Institutes of Sweden, Säkerhet och transport, Maritima avdelningen.ORCID-id: 0000-0002-9587-3423
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.ORCID-id: 0000-0003-1908-3136
2023 (engelsk)Inngår i: 2023 IEEE Intelligent Vehicles Symposium (IV), 2023Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Vehicle-to-Vehicle communication can improve traffic safety and efficiency. This technology, however, increases the attack surface, making new attacks possible. To cope with these threats, researchers have made a great effort to identify and explore the potential of cyberattacks and also proposed various intrusion or misbehaviour detection systems, in particular machine learning-based solutions. Simulations have become essential to design and evaluate such detection systems as there are no real publicly available Vehicular Ad-Hoc Network (VANET) datasets containing a variety of attacks. The drawback is that simulations require a significant amount of computational resources and time for configuration. In this paper, we present an attack simulation and generation framework that allows training the attack generator with either simulated or real VANET attacks. We outline the structure of our proposed framework and describe the setup of a standard-compliant attack simulator that generates valid standardised CAM and DENM messages specified by ETSI in the Cooperative Intelligent Transport Systems (C-ITS) standards. Based on the introduced framework, we demonstrate the feasibility of using deep learning for the generation of VANET attacks, which ultimately allows us to test and verify prototypes without running resource-demanding simulations.

sted, utgiver, år, opplag, sider
2023.
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-66341DOI: 10.1109/iv55152.2023.10186685OAI: oai:DiVA.org:ri-66341DiVA, id: diva2:1794481
Konferanse
2023 IEEE Intelligent Vehicles Symposium (IV). 4-7 June 2023
Tilgjengelig fra: 2023-09-05 Laget: 2023-09-05 Sist oppdatert: 2024-02-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Rosenstatter, ThomasMelnyk, Kateryna

Søk i DiVA

Av forfatter/redaktør
Rosenstatter, ThomasMelnyk, Kateryna
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 111 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0