Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel machine learning approach to predict short-term energy load for future low-temperature district heating
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-5091-6285
NTNU, Norway.
KTH Royal Institute of Technology, Sweden; Uponor AB, Sweden.
2022 (engelsk)Inngår i: The REHVA European HVAC Journal, nr Dec, s. 19-24Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this work, we develop machine learning methods to forecast the day-ahead heating energy demand of district heating (DH) end-users in hourly resolution, using existing metering data for DH end-users and weather data. The focus of the study is a detailed analysis of the accuracy levels of short-term load prediction methods. In particular, accuracy levels are quantified for Artificial Neural Network (ANN) models with variations in the input parameters. The importance of historical data is investigated – in particular the importance of including historical hourly heating loads as input to the forecasting model. Additionally, the impact of different lengths of the historical input data is studied. Our methods are evaluated and validated using metering data from a live use-case in a Scandinavian environment, collected from 20 DH-supplied nursing homes through the years of 2016 to 2019. This study demonstrates that, although there is a strong linear relationship between outdoor temperature and heating load, it is still important to include historical heating loads as an input for prediction of future heating loads. Furthermore, the results show that it is important to include historical data from at least the preceding 24 hours, but suggest diminishing returns of including data much further back than that. The resulting models demonstrate the practical feasibility of such prediction models in a live use-case.

sted, utgiver, år, opplag, sider
2022. nr Dec, s. 19-24
Emneord [en]
Low-temperature district heating, short-term load prediction, machine learning, Scandinavian climate.
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-62546OAI: oai:DiVA.org:ri-62546DiVA, id: diva2:1728203
Konferanse
REHVA 14th HVAC World Congress. 22-25 May, 2022. Rotterdam, Netherlands.
Tilgjengelig fra: 2023-01-18 Laget: 2023-01-18 Sist oppdatert: 2023-06-08bibliografisk kontrollert

Open Access i DiVA

fulltext(780 kB)62 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 780 kBChecksum SHA-512
80d05d190a7c422b935cd7bf93b2087e00d55786c5c517a5fadc34c52ba0dbcf388a9efdfa0189e1702ce68dd8a172efec3ed36d5154eac66a2a05bd65e3b235
Type fulltextMimetype application/pdf

Person

Timoudas, Thomas Ohlson

Søk i DiVA

Av forfatter/redaktør
Timoudas, Thomas Ohlson
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 62 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 210 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0