Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects on indentation mechanical properties by chemically strengthening of TiO2 and Al2O3 doped soda lime silicate glasses
RISE Research Institutes of Sweden, Bioekonomi och hälsa, Material- och ytdesign. (Glass)ORCID-id: 0000-0003-2160-6979
2022 (engelsk)Konferansepaper, Oral presentation with published abstract (Annet vitenskapelig)
Abstract [en]

Soda lime silicate is an important industrial glass type, it is used in, e.g., windows, containers, household glasses, displays, cover glasses and in automotive glazing. The importance of soda lime silicate glass originates from the forming ability that enables low-cost manufacturing but also relatively high hardness, good chemical durability, and the essential transparency in the visible range. However, soda lime silicate glass suffers from brittleness and has a relatively low resistance towards surface defects. Therefore, is the practical strength of commercially available glass in the soda lime silicate glass family limited. The mechanical properties of glass is of great importance in various applications. Chemical strengthening (CS) of glass has become a successful process that today is used in many applications. It makes glass stronger by exchanging larger ions from a molten salt bath with smaller ions from the glass and thereby inducing compressive stresses in the surface. However, soda lime silicate glass is typically not well-suited for this process and therefore has the effect of dopants on surface mechanical properties as result of CS been studied. Hardness, reduced elastic modulus and crack resistance were studied. The CS was performed in a molten KNO3 salt bath at 450 °C. The results will be discussed in relation to the compositional and structural changes.

sted, utgiver, år, opplag, sider
2022.
Emneord [en]
glass, chemical strengthening, ion exchange, nano-indentation, micro-indentation, mechanical properties
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-59885OAI: oai:DiVA.org:ri-59885DiVA, id: diva2:1686547
Konferanse
26th International Congress on Glass (ICG2022)
Prosjekter
Tunnare och starkare glas för hållbar produktion och konsumtion
Forskningsfinansiär
Swedish Research Council Formas, 2018-00707
Merknad

Funding: Forskningsrådet Formas 2018-00707

Tilgjengelig fra: 2022-08-10 Laget: 2022-08-10 Sist oppdatert: 2023-03-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Karlsson, Stefan

Søk i DiVA

Av forfatter/redaktør
Karlsson, Stefan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 106 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0