Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic Voting based Explainable Intrusion Detection System for In-vehicle Network
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.ORCID-id: 0000-0002-8511-6867
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.
2022 (engelsk)Inngår i: International Conference on Advanced Communication Technology, ICACT, Institute of Electrical and Electronics Engineers Inc. , 2022, s. 406-411Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

A modern vehicle contains a large number of electronic components communicating over a large in-vehicle network. While the operation of this network is crucial, some implementations are vulnerable to a number of security attacks while lacking sufficient security measures. Intrusion detection systems have been proposed as a possible solution to this, with those using machine learning receiving much attention. However, such systems may be hard to interpret and understand. In this work, we propose an automotive intrusion detection system that utilizes Random Forest with a dynamic voting technique to provide a robust solution with interpretability through feature and model exploration. The proposed solution is evaluated using two publicly available datasets and demonstrates stable performance when compared to similar solutions.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers Inc. , 2022. s. 406-411
Emneord [en]
ensemble learning, explainable AI, In-vehicle network, intrusion detection, random forest, Computer crime, Decision trees, Vehicles, Automotives, Electronic component, In-vehicle networks, Intrusion Detection Systems, Intrusion-Detection, Random forests, Security attacks, Security measure
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-59771DOI: 10.23919/ICACT53585.2022.9728968Scopus ID: 2-s2.0-85127519007ISBN: 9791188428090 (tryckt)OAI: oai:DiVA.org:ri-59771DiVA, id: diva2:1680563
Konferanse
24th International Conference on Advanced Communication Technology, ICACT 2022, 13 February 2022 through 16 February 2022
Tilgjengelig fra: 2022-07-04 Laget: 2022-07-04 Sist oppdatert: 2023-05-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Rosell, Joakim

Søk i DiVA

Av forfatter/redaktør
Rosell, Joakim
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 17 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.41.0