Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Fault Detection Framework Based on LSTM Autoencoder: A Case Study for Volvo Bus Data Set
INESC TEC, Portugal.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. Halmstad University, Sweden.ORCID-id: 0000-0003-3272-4145
INESC TEC, Portugal; University Portucalense, Portugal.
Halmstad University, Sweden.
Vise andre og tillknytning
2022 (engelsk)Inngår i: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)Volume 13205 LNCS, Pages 39 - 522022, Springer Science and Business Media Deutschland GmbH , 2022, s. 39-52Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This study applies a data-driven anomaly detection framework based on a Long Short-Term Memory (LSTM) autoencoder network for several subsystems of a public transport bus. The proposed framework efficiently detects abnormal data, significantly reducing the false alarm rate compared to available alternatives. Using historical repair records, we demonstrate how detection of abnormal sequences in the signals can be used for predicting equipment failures. The deviations from normal operation patterns are detected by analysing the data collected from several on-board sensors (e.g., wet tank air pressure, engine speed, engine load) installed on the bus. The performance of LSTM autoencoder (LSTM-AE) is compared against the multi-layer autoencoder (mlAE) network in the same anomaly detection framework. The experimental results show that the performance indicators of the LSTM-AE network, in terms of F1 Score, Recall, and Precision, are better than those of the mlAE network. © 2022, The Author(s)

sted, utgiver, år, opplag, sider
Springer Science and Business Media Deutschland GmbH , 2022. s. 39-52
Emneord [en]
Autoencoder, Fault detection, LSTM, Outliers, Time series, Anomaly detection, Buses, Engines, Network layers, Anomaly detection frameworks, Auto encoders, Case-studies, Data set, Data-driven anomalies, Detection framework, Faults detection, Multi-layers, Times series, Volvo bus, Long short-term memory
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-59249DOI: 10.1007/978-3-031-01333-1_4Scopus ID: 2-s2.0-85128784943ISBN: 9783031013324 (tryckt)OAI: oai:DiVA.org:ri-59249DiVA, id: diva2:1668468
Konferanse
20th International Symposium on Intelligent Data Analysis, IDA 2022Rennes20 April 2022 through 22 April 2022
Merknad

 Funding details: 2020-00767; Funding details: Fundação para a Ciência e a Tecnologia, FCT; Funding details: Vetenskapsrådet, VR; Funding text 1: This work was supported by the CHIST-ERA grant CHIST-ERA-19-XAI-012, project CHIST-ERA/0004/2019 funded by FCT - Funda¸cão para a Ciência e Tecnologia and project 2020-00767 funded by Swedish Research Council.

Tilgjengelig fra: 2022-06-13 Laget: 2022-06-13 Sist oppdatert: 2023-11-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Pashami, Sepideh

Søk i DiVA

Av forfatter/redaktør
Pashami, Sepideh
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 140 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0