Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Post-hoc Explainability for Time Series Classification: Towards a Signal Processing Perspective
RISE Research Institutes of Sweden, Digitala system, Industriella system.ORCID-id: 0000-0003-0995-9835
School of Electrical Engineering, Switzerland.
Stockholm University, Sweden.
Stockholm University, Sweden.
Vise andre og tillknytning
2022 (engelsk)Inngår i: IEEE signal processing magazine (Print), ISSN 1053-5888, E-ISSN 1558-0792, Vol. 39, nr 4, s. 119-129Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Time series data correspond to observations of phenomena that are recorded over time [1]. Such data are encountered regularly in a wide range of applications, such as speech and music recognition, monitoring health and medical diagnosis, financial analysis, motion tracking, and shape identification, to name a few. With such a diversity of applications and the large variations in their characteristics, time series classification is a complex and challenging task. One of the fundamental steps in the design of time series classifiers is that of defining or constructing the discriminant features that help differentiate between classes. This is typically achieved by designing novel representation techniques [2] that transform the raw time series data to a new data domain, where subsequently a classifier is trained on the transformed data, such as one-nearest neighbors [3] or random forests [4]. In recent time series classification approaches, deep neural network models have been employed that are able to jointly learn a representation of time series and perform classification [5]. In many of these sophisticated approaches, the discriminant features tend to be complicated to analyze and interpret, given the high degree of nonlinearity.

sted, utgiver, år, opplag, sider
2022. Vol. 39, nr 4, s. 119-129
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-58800DOI: 10.1109/MSP.2022.3155955Scopus ID: 2-s2.0-85133840717OAI: oai:DiVA.org:ri-58800DiVA, id: diva2:1643492
Tilgjengelig fra: 2022-03-09 Laget: 2022-03-09 Sist oppdatert: 2023-06-07bibliografisk kontrollert

Open Access i DiVA

fulltext(7747 kB)788 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 7747 kBChecksum SHA-512
2c6516273b7e22b0609353313fc7da871f20cce635139f6ebc8fca2f1d50b255b49db2bd427c12faf4d39caec27ccd71e5f5c6a5666949190d08ee946974b190
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Mochaourab, Rami

Søk i DiVA

Av forfatter/redaktør
Mochaourab, Rami
Av organisasjonen
I samme tidsskrift
IEEE signal processing magazine (Print)

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 788 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 149 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0