Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dataset: A Low-resolution infrared thermal dataset and potential privacy-preserving applications
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. Uppsala University, Sweden.ORCID-id: 0000-0002-2586-8573
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. KTH Royal Institute of Technology, Sweden.ORCID-id: 0000-0002-1322-4367
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-7257-4386
2021 (engelsk)Inngår i: SenSys 2021 - Proceedings of the 2021 19th ACM Conference on Embedded Networked Sensor Systems, Association for Computing Machinery, Inc , 2021, s. 552-555Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper presents a low-resolution infrared thermal dataset of people and thermal objects, such as a working laptop, in indoor environments. The dataset was collected by a far infrared thermal camera (32x24 pixels), which can capture the position and shape information of thermal objects without privacy issues that enable trustworthy computer vision applications. The dataset consists of 1770 thermal images with high-quality annotation collected from an indoor room with around 15°C. We implemented a privacy-preserving human detection method and trained a multiple object detection (MOD) model based on the dataset. The human detection method reaches 90.3% accuracy. On the other hand, the MOD model achieved 56.8% mean average precision (mAP). Researchers can implement interesting applications based on our dataset, for example, privacy-preserving people counting systems, occupancy estimation systems for smart buildings, and social distance detectors. 

sted, utgiver, år, opplag, sider
Association for Computing Machinery, Inc , 2021. s. 552-555
Emneord [en]
computer vision, infrared thermal dataset, low-resolution thermal images, privacy-preserving applications
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-57939DOI: 10.1145/3485730.3493692Scopus ID: 2-s2.0-85120846557ISBN: 9781450390972 (tryckt)OAI: oai:DiVA.org:ri-57939DiVA, id: diva2:1626909
Konferanse
19th ACM Conference on Embedded Networked Sensor Systems, SenSys 2021, 15 November 2021 through 17 November 2021
Merknad

Funding details: Stiftelsen för Strategisk Forskning, SSF; Funding text 1: This project is financially supported by the Swedish Foundation for Strategic Research.

Tilgjengelig fra: 2022-01-12 Laget: 2022-01-12 Sist oppdatert: 2025-02-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Voigt, ThiemoPerez-Ramirez, Daniel F.Eriksson, Joakim

Søk i DiVA

Av forfatter/redaktør
Voigt, ThiemoPerez-Ramirez, Daniel F.Eriksson, Joakim
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 361 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0