Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cellular Automata Can Reduce Memory Requirements of Collective-State Computing
RISE Research Institutes of Sweden, Digitala system, Datavetenskap. University of California at Berkeley, USA.ORCID-id: 0000-0002-6032-6155
University of California at Berkeley, USA; Intel Labs, USA.
University of California at Berkeley, USA; Intel Labs, USA.
2022 (engelsk)Inngår i: IEEE Transactions on Neural Networks and Learning Systems, ISSN 2162-237X, E-ISSN 2162-2388, Vol. 33, nr 6, s. 2701-2713Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Various nonclassical approaches of distributed information processing, such as neural networks, reservoir computing (RC), vector symbolic architectures (VSAs), and others, employ the principle of collective-state computing. In this type of computing, the variables relevant in computation are superimposed into a single high-dimensional state vector, the collective state. The variable encoding uses a fixed set of random patterns, which has to be stored and kept available during the computation. In this article, we show that an elementary cellular automaton with rule 90 (CA90) enables the space-time tradeoff for collective-state computing models that use random dense binary representations, i.e., memory requirements can be traded off with computation running CA90. We investigate the randomization behavior of CA90, in particular, the relation between the length of the randomization period and the size of the grid, and how CA90 preserves similarity in the presence of the initialization noise. Based on these analyses, we discuss how to optimize a collective-state computing model, in which CA90 expands representations on the fly from short seed patterns--rather than storing the full set of random patterns. The CA90 expansion is applied and tested in concrete scenarios using RC and VSAs. Our experimental results show that collective-state computing with CA90 expansion performs similarly compared to traditional collective-state models, in which random patterns are generated initially by a pseudorandom number generator and then stored in a large memory. 

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers Inc. , 2022. Vol. 33, nr 6, s. 2701-2713
Emneord [en]
Automata, Cellular automata (CA), collective-state computing, Computational modeling, Decoding, distributed representations, hyperdimensional computing, Memory management, Neurons, random number generation, reservoir computing (RC), Reservoirs, rule 90, Task analysis, vector symbolic architectures (VSAs)., Cellular automata, Job analysis, Memory architecture, Network architecture, Random processes, Reservoir management, Automaton, Cellular automaton, Cellular automatons, Computational modelling, Distributed representation, Memory-management, Random-number generation, Reservoir Computing, Vector symbolic architecture .
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-57075DOI: 10.1109/TNNLS.2021.3119543Scopus ID: 2-s2.0-85118596577OAI: oai:DiVA.org:ri-57075DiVA, id: diva2:1614215
Tilgjengelig fra: 2021-11-24 Laget: 2021-11-24 Sist oppdatert: 2023-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Kleyko, Denis

Søk i DiVA

Av forfatter/redaktør
Kleyko, Denis
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Neural Networks and Learning Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 117 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0