Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Facilitating Large-Amplitude Motions of WaveEnergy Converters in OpenFOAM by a Modified Mesh Morphing Approach
Sigma Energy and Marine AB, Sweden.
RISE Research Institutes of Sweden, Säkerhet och transport, Säkerhetsforskning. Aalborg University, Denmark.ORCID-id: 0000-0001-6934-634x
2021 (engelsk)Inngår i: Proceedings of the 14th European Wave and Tidal Energy Conference 5-9th Sept 2021, Plymouth, UK, 2021, s. 2107-1-2107-8Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

High-fidelity simulations using computational fluid dynamics (CFD) for wave-body interaction are becoming increasingly common and important for wave energy converter (WEC) design. The open source finite volume toolbox OpenFOAM® is one of the most frequently used platforms for wave energy. There are currently two ways to account for moving bodies in OpenFOAM: (i) mesh morphing, where mesh deforms around the body; and (ii) an overset mesh method where a separate body mesh moves on top of a background mesh. Mesh morphing is computationally efficient but may introduce highly deformed cells for combinations of large translational and rotational motion. The overset method allows for arbitrarily large body motions (in certain conditions) and retains the quality of the mesh. However, it comes with a substantial increase in computational cost and possible loss of energy conservation due to the interpolation. In this paper we present a straightforward extension of the spherical linear interpolation (SLERP) based mesh morphing algorithm that increase the stability range of the method. The mesh deformation is allowed to be interpolated independently for different modes of motion, which facilitates tailored mesh motion simulations. The paper details the implementation of the method and evaluates its performance with computational examples of a cylinder with a moonpool. The examples show that the modified mesh morphing approach handles large motions well and provides a cost effective alternative to overset mesh for survival conditions.

sted, utgiver, år, opplag, sider
2021. s. 2107-1-2107-8
Emneord [en]
wave energy converter, CFD, wave-body interaction, survival, extreme waves, OpenFOAM.
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-56726OAI: oai:DiVA.org:ri-56726DiVA, id: diva2:1598883
Konferanse
14th European Wave and Tidal Energy Conference 5-9th Sept 2021, Plymouth, UK
Merknad

This work was supported by the Swedish Energy Agency under project  numbers 40428-1 and 47264-1.

Tilgjengelig fra: 2021-09-29 Laget: 2021-09-29 Sist oppdatert: 2025-02-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Eskilsson, Claes

Søk i DiVA

Av forfatter/redaktør
Eskilsson, Claes
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 57 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0