Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Federated Learning to Enable Automotive Collaborative Ecosystem: Opportunities and Challenges
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.ORCID-id: 0000-0001-9808-1483
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.ORCID-id: 0000-0003-2772-4351
RISE Research Institutes of Sweden, Digitala system, Mobilitet och system.ORCID-id: 0000-0002-1043-8773
2020 (engelsk)Inngår i: Proceedings of Virtual ITS European Congress, 2020, artikkel-id Paper number ITS-TP18524Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Despite the strong interests in creating data economy, automotive industries are creating data silos with each stakeholder maintaining its own data cloud. Federated learning (FL), designed for privacy-preserving collaborative Machine Learning (ML), offers a promising method that allows multiple stakeholders to share information through ML models without the exposure of raw data, thus natively protecting privacy. Motivated by the strong need for automotive collaboration and the advancement of FL, this paper investigates how FL could enable privacy-preserving information sharing for automotive industries. We first introduce the statuses and challenges for automotive data sharing, followed by a brief introduction to FL. We then present a comprehensive discussion on potential applications of federated learning to enable an automotive collaborative ecosystem. To illustrate the benefits, we apply FL for driver action classification and demonstrate the potential for collaborative machine learning without data sharing.

sted, utgiver, år, opplag, sider
2020. artikkel-id Paper number ITS-TP18524
Emneord [en]
automotive data sharing, federated learning, privacy-preserving
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-56294OAI: oai:DiVA.org:ri-56294DiVA, id: diva2:1590504
Konferanse
Virtual ITS European Congress, 9-10 November 2020
Forskningsfinansiär
VinnovaTilgjengelig fra: 2021-09-02 Laget: 2021-09-02 Sist oppdatert: 2024-05-22bibliografisk kontrollert

Open Access i DiVA

fulltext(2938 kB)636 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2938 kBChecksum SHA-512
ce9dc42620549344890fad6dd26ad3b6b4a7b9dd8de1e756733f549e7044c285c2b2a3a6baf0deea859cac823f759603b3f67c4dc6739034b934671e9494488b
Type fulltextMimetype application/pdf

Person

Chen, LeiTorstensson, MartinEnglund, Cristofer

Søk i DiVA

Av forfatter/redaktør
Chen, LeiTorstensson, MartinEnglund, Cristofer
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 637 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1450 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0