The International Maritime Organization, through its correspondence group on fire safety, has underlined the need for more scientific studies regarding the performance of A-60 boundaries in case of a ro-ro space fire, especially to prevent fire spread to accommodation spaces. RISE has carried out the RoBound project in order to answer to this need. The goal of the project was to clarify the performance of “state-of-the-art” fire boundaries between ro-ro spaces and accommodation spaces or other ro-ro spaces, and to give recommendations on how sufficient fire containment is ensured.In order to obtain realistic exposure reached during a fire within a ro-ro space, simulations were performed using Computational Fluid Dynamics (Fire Dynamics Simulator).The first step was to model representative ro-ro spaces as well as representative cargo. Two representative ro-ro spaces were then defined: closed and open ro-ro spaces with open ends. Concerning the cargo, the ro-ro spaces were assumed fully loaded with trucks or fully loaded with cars. Moreover, two types of thermal insulation were chosen, A-60 and A-30. The highest temperature given for each simulated case was then compared with time-temperature curves for designing fire safety.Almost all comparisons showed that the hydrocarbon time-temperature curve fits better to the highest temperature reached in the simulations. The hydrocarbon time-temperature curve is more severe than the standard (cellulosic) time-temperature curve according to ISO 834, used for type approval of thermal insulation. Experimental tests were then carried out to observe the performance of A class insulation when exposed to the more representative hydrocarbon time-temperature curve in a cubic furnace. The fire insulations were mounted on steel plates with different thicknesses (5 mm, 6 mm and 12 mm).Tests results showed a significantly reduced fire integrity when exposed to the hydrocarbon time-temperature curve, meaning that it took less time to reach the maximum temperature elevations required by the FTP Code (140 °C for the average temperature elevation and 180 °C for the highest temperature elevation). The reduction was about 50%, depending on the thickness of the steel plate. These results apply for stone wool. Glass wool fire insulation was also used in the tests but it was deteriorated when exposed to the high heat exposure in accordance with the hydrocarbon time-temperature curve.