Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Snow-induced PV loss modeling using production-data inferred PV system models
RISE Research Institutes of Sweden, Samhällsbyggnad, Energi och resurser.ORCID-id: 0000-0003-0245-7082
SMHI, Sweden.
SMHI, Sweden.
2021 (engelsk)Inngår i: Energies, E-ISSN 1996-1073, Vol. 14, nr 6, artikkel-id 1574Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Snow-induced photovoltaic (PV)-energy losses (snow losses) in snowy and cold locations vary up to 100% monthly and 34% annually, according to literature. Levels that illustrate the need for snow loss estimation using validated models. However, to our knowledge, all these models build on limited numbers of sites and winter seasons, and with limited climate diversity. To overcome this limitation in underlying statistics, we investigate the estimation of snow losses using a PV system’s yield data together with freely available gridded weather datasets. To develop and illustrate this approach, 263 sites in northern Sweden are studied over multiple winters. Firstly, snow-free production is approximated by identifying snow-free days and using corresponding data to infer tilt and azimuth angles and a snow-free performance model incorporating shading effects, etc. This performance model approximates snow-free monthly yields with an average hourly standard deviation of 6.9%, indicating decent agreement. Secondly, snow losses are calculated as the difference between measured and modeled yield, showing annual snow losses up to 20% and means of 1.5-6.2% for winters with data for at least 89 sites. Thirdly, two existing snow loss estimation models are compared to our calculated snow losses, with the best match showing a correlation of 0.73 and less than 1% bias for annual snow losses. Based on these results, we argue that our approach enables studying snow losses for high numbers of PV systems and winter seasons using existing datasets. © 2021 by the authors.

sted, utgiver, år, opplag, sider
MDPI AG , 2021. Vol. 14, nr 6, artikkel-id 1574
Emneord [en]
Photovoltaics, PV system modeling, PV system performance, Reanalysis data, Remote sensing, Shading, Snow, Snow losses, Soiling, Climate models, Energy dissipation, Loss estimation, Northern sweden, Performance Model, Photovoltaic energy, Production data, Shading effect, Standard deviation, Winter seasons
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-54703DOI: 10.3390/en14061574Scopus ID: 2-s2.0-85107952823OAI: oai:DiVA.org:ri-54703DiVA, id: diva2:1575655
Merknad

 Funding details: Energimyndigheten, 38180-2; Funding text 1: Funding: This research was funded by Energimyndigheten (Swedish Energy Agency), project number 38180-2.

Tilgjengelig fra: 2021-06-30 Laget: 2021-06-30 Sist oppdatert: 2023-08-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

van Noord, Michiel

Søk i DiVA

Av forfatter/redaktør
van Noord, Michiel
Av organisasjonen
I samme tidsskrift
Energies

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 73 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0