Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Recurrent Conditional Generative Adversarial Networks forAutonomous Driving Sensor Modelling
Zenuity AB, Sweden.
RISE Research Institutes of Sweden, Digitala system, Datavetenskap.ORCID-id: 0000-0001-7856-113X
Zenuity AB, Sweden.
2019 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

 Simulation of the real world is a widely researchedtopic in various fields. The automotive industry in particular isvery dependent on real world simulations, since these simulations are needed in order to prove the safety of advance driverassistance systems (ADAS) and autonomous driving (AD). Inthis paper we propose a deep learning based model for simulating the outputs from production sensors used in autonomousvehicles. We introduce an improved Recurrent ConditionalGenerative Adversarial Network (RC-GAN) consisting of Recurrent Neural Networks (RNNs) that use Long Short-TermMemory (LSTM) in both the generator and the discriminatornetworks in order to generate production sensor errors thatexhibit long-term temporal correlations. The network is trainedin a sequence-to-sequence fashion where we condition theoutput from the model on sequences describing the surroundingenvironment. This enables the model to capture spatial andtemporal dependencies, and the model is used to generatesynthetic time series describing the errors in a productionsensor which can be used for more realistic simulations. Themodel is trained on a data set collected from real roads withvarious traffic settings, and yields significantly better results ascompared to previous works.

sted, utgiver, år, opplag, sider
2019.
Emneord [en]
Time series analysis, Generators, Gallium nitride, Generative adversarial networks, Production, Hidden Markov models, Computational modeling
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-51871DOI: 10.1109/ITSC.2019.8916999OAI: oai:DiVA.org:ri-51871DiVA, id: diva2:1519026
Konferanse
2019 IEEE Intelligent Transportation Systems Conference (ITSC). 27-30 Oct. 2019. Auckland, New Zealand.
Tilgjengelig fra: 2021-01-18 Laget: 2021-01-18 Sist oppdatert: 2024-07-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Zec, Edvin Listo

Søk i DiVA

Av forfatter/redaktør
Zec, Edvin Listo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 219 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0