Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting mould growth on building materials- the PJ-model
RISE Research Institutes of Sweden, Samhällsbyggnad, Bygg och fastighet.ORCID-id: 0000-0003-0200-6513
Thomas Svensson-Ingenjörstatisk, Sweden.
2020 (engelsk)Inngår i: E3S Web of Conferences. Volyme 172, 2020., EDP Sciences , 2020, artikkel-id 20001Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Mould growth in buildings is a complex process, affected by moisture and temperature, the properties of the building material as well as characteristics of the mould fungi. The complexity poses challenges when assessing the risk of mould growth in buildings. Mathematical models are often used to predict whether mould will grow in a part of building with expected RH and temperature conditions. The models can be described as static or dynamic. In a previous round-robin study, comparing results from models with observations from field studies, the outcome of the dynamic models evaluated depended on the user of the model. Also, the models often underestimated the risk of mould growth. A better agreement was found for static models, especially for the PJ-model. It is a part of a standardised technical specification (SIS-TS 41:2014) and has not previously been described as a model. The critical moisture level (RHcrit), determined by tests according to the method, is used as input. Thus, the subjectivity in the predictions is reduced. RHcrit is the lowest moisture level at which mould can grow and is temperature-dependent. The PJ-model provides an equation to estimate RHcrit at typical temperatures in buildings. If RH in a building section exceeds the limit values at the current temperature, growth is predicted. This paper describes the PJ-model version 1.0, some of the extensive work performed during the development and validation of the model and the ongoing work to refine the model to include considering transient conditions and measurement uncertainties. © The Authors

sted, utgiver, år, opplag, sider
EDP Sciences , 2020. artikkel-id 20001
Emneord [en]
Building materials, Dynamics, Forecasting, Moisture, Moisture determination, Molds, Risk assessment, Uncertainty analysis, Complex Processes, Measurement uncertainty, Moisture level, Round robin studies, Technical specifications, Temperature conditions, Temperature dependent, Transient conditions, Buildings
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-45620DOI: 10.1051/e3sconf/202017220001Scopus ID: 2-s2.0-85088451101OAI: oai:DiVA.org:ri-45620DiVA, id: diva2:1458835
Konferanse
12th Nordic Symposium on Building Physics, NSB 2020, 6 September 2020 through 9 September 2020
Tilgjengelig fra: 2020-08-18 Laget: 2020-08-18 Sist oppdatert: 2023-06-05bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Johansson, Pernilla

Søk i DiVA

Av forfatter/redaktør
Johansson, Pernilla
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 97 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.46.0