Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Numerical and Experimental Analysis of Self-Protection in Reinforced Concrete due to Application of Mg–Al–NO2 Layered Double Hydroxides
Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, Germany.
Universidade de Aveiro, Portugal.
Universidade de Aveiro, Portugal.
RISE Research Institutes of Sweden, Bioekonomi och hälsa, Material- och ytdesign.ORCID-id: 0000-0003-1904-7426
Vise andre og tillknytning
2020 (engelsk)Inngår i: Advanced Engineering Materials, ISSN 1438-1656, E-ISSN 1527-2648Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Concrete possesses an intrinsic chloride binding capacity. Chloride ions from the environment bind with the hydrated cementitious phases in the form of bound chlorides. The contribution of chemically bound chlorides toward increasing the service life of concrete structures is vital as they help in slowing down the chloride diffusion in the concrete thereby delaying reinforcement depassivation. The authors attempt to increase the chloride binding capacity of concrete by adding a small amount of Mg–Al–NO2 layered double hydroxides (LDHs) with the objective to delay reinforcement corrosion and by this to considerably extend the service life of concrete structures situated in harsh environments. This study presents numerical and experimental analysis of the action of LDH in concrete. Formation factor is used to determine the effective chloride diffusion coefficient. In addition, the chloride binding isotherms together with Poisson–Nernst–Planck equations are used to model the chloride ingress. A comparable chloride binding is observed for concrete with and without Mg–Al–NO2, depicting only a slight chloride uptake by Mg–Al–NO2. Further investigations are conducted to understand this behavior by studying the stability and chloride entrapping capacity Mg–Al–NO2 in concrete. © 2020 The Authors.

sted, utgiver, år, opplag, sider
Wiley-VCH Verlag , 2020.
Emneord [en]
concrete, corrosion, finite element analysis, layered double hydroxides, Aluminum corrosion, Chlorine compounds, Concrete buildings, Concrete construction, Electrochemical corrosion, Nitrogen oxides, Chloride binding capacity, Chloride binding isotherms, Chloride diffusion, Chloride diffusion coefficient, Increasing the service lives, Numerical and experimental analysis, Reinforcement corrosion, Reinforced concrete
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-45394DOI: 10.1002/adem.202000398Scopus ID: 2-s2.0-85087175815OAI: oai:DiVA.org:ri-45394DiVA, id: diva2:1455030
Merknad

Funding details: 685445; Funding text 1: This research was funded by the European Union's Horizon 2020 research and innovation program under grant agreement number 685445 (LORCENIS — Long Lasting Reinforced Concrete for Energy infrastructure under Severe Operating Conditions).

Tilgjengelig fra: 2020-07-21 Laget: 2020-07-21 Sist oppdatert: 2020-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Mueller, Urs

Søk i DiVA

Av forfatter/redaktør
Mueller, Urs
Av organisasjonen
I samme tidsskrift
Advanced Engineering Materials

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 36 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0