Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ambient-Dried, 3D-Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
KTH Royal Institute of Technology, Sweden.
Vise andre og tillknytning
2020 (engelsk)Inngår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, artikkel-id 1909383Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This study presents a novel, green, and efficient way of preparing crosslinked aerogels from cellulose nanofibers (CNFs) and alginate using non-covalent chemistry. This new process can ultimately facilitate the fast, continuous, and large-scale production of porous, light-weight materials as it does not require freeze-drying, supercritical CO2 drying, or any environmentally harmful crosslinking chemistries. The reported preparation procedure relies solely on the successive freezing, solvent-exchange, and ambient drying of composite CNF-alginate gels. The presented findings suggest that a highly-porous structure can be preserved throughout the process by simply controlling the ionic strength of the gel. Aerogels with tunable densities (23–38 kg m−3) and compressive moduli (97–275 kPa) can be prepared by using different CNF concentrations. These low-density networks have a unique combination of formability (using molding or 3D-printing) and wet-stability (when ion exchanged to calcium ions). To demonstrate their use in advanced wet applications, the printed aerogels are functionalized with very high loadings of conducting poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:TOS) polymer by using a novel in situ polymerization approach. In-depth material characterization reveals that these aerogels have the potential to be used in not only energy storage applications (specific capacitance of 78 F g−1), but also as mechanical-strain and humidity sensors. © 2020 The Authors. 

sted, utgiver, år, opplag, sider
Wiley-VCH Verlag , 2020. artikkel-id 1909383
Emneord [en]
aerogels, cellulose, nanofibers, organic electronics, poly(3, 4-ethylenedioxythiophene), Crosslinking, Drying, Ion exchange, Ionic strength, Ions, Nanocellulose, Scales (weighing instruments), Sulfur compounds, Crosslinking chemistry, Energy storage applications, In-situ polymerization, Large scale productions, Material characterizations, Poly-3, 4-ethylenedioxythiophene, Preparation procedures, 3D printers
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-43949DOI: 10.1002/adfm.201909383Scopus ID: 2-s2.0-85078930679OAI: oai:DiVA.org:ri-43949DiVA, id: diva2:1394653
Tilgjengelig fra: 2020-02-19 Laget: 2020-02-19 Sist oppdatert: 2023-05-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Granberg, Hjalmar

Søk i DiVA

Av forfatter/redaktør
Granberg, Hjalmar
Av organisasjonen
I samme tidsskrift
Advanced Functional Materials

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 236 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0