Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Design of a local energy market with multiple energy carriers
RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.ORCID-id: 0000-0003-2092-6866
RISE Research Institutes of Sweden, Säkerhet och transport, Mätteknik.
2020 (engelsk)Inngår i: International Journal of Electrical Power & Energy Systems, ISSN 0142-0615, E-ISSN 1879-3517, Vol. 118, artikkel-id 105739Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Recent developments in the electric power sector as well as in district heating and cooling systems has led to an increased interest in local energy systems and markets. In the electricity sector, this is driven by the integration of distributed resources such as solar power, electric vehicles and demand response. For district heating, sustainability and energy efficiency targets drives the development to further exploit small-scale heat sources. A closer integration of these energy carriers can also unlock potential flexibility, to the benefit of local as well as overlaying systems. In this respect, there is a need to further explore the possibilities to design local energy markets to facilitate the integration between electricity and district heating, as well as providing adequate instruments enabling flexibility. This paper therefore presents a market clearing design, based on optimization, for local energy markets incorporating multiple energy carriers and bid structures suitable for representing flexibility. The market clearing model is applied in a case study to illustrate and validate key design elements. One conclusion is that even though various elements can be added to the market clearing function, there is a challenge to interpret the results due to an increased complexity of the resulting optimization problem. 

sted, utgiver, år, opplag, sider
Elsevier Ltd , 2020. Vol. 118, artikkel-id 105739
Emneord [en]
Distributed energy resources, Energy system integration, Local energy system, Market design, Automobile cooling systems, District heating, Energy efficiency, Power markets, Solar energy, Distributed resources, District heating and cooling systems, Electric power sector, Energy systems, Local energy systems, Optimization problems, Commerce
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-43382DOI: 10.1016/j.ijepes.2019.105739Scopus ID: 2-s2.0-85076467107OAI: oai:DiVA.org:ri-43382DiVA, id: diva2:1390375
Merknad

Funding details: UIA01-209; Funding text 1: The work presented in this paper has been financially supported by the Fossil Free Energy project, funded by the European Urban Innovation Actions program (project No. UIA01-209 ), and the m2M-GRID project, funded by the ERA-Net Smart Energy Systems program (project No. #82136).

Tilgjengelig fra: 2020-01-31 Laget: 2020-01-31 Sist oppdatert: 2020-01-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Brolin, Magnus

Søk i DiVA

Av forfatter/redaktør
Brolin, Magnus
Av organisasjonen
I samme tidsskrift
International Journal of Electrical Power & Energy Systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 42 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.9