Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying breach mechanism during air-gap spinning of lignin–cellulose ionic-liquid solutions
RISE - Research Institutes of Sweden, Material och produktion, IVF. Chalmers University of Technology, Sweden.ORCID-id: 0000-0002-2513-4289
RISE - Research Institutes of Sweden, Material och produktion, IVF.ORCID-id: 0000-0003-2893-8554
RISE - Research Institutes of Sweden, Material och produktion, IVF.ORCID-id: 0000-0003-1259-6414
Chalmers University of Technology, Sweden.
2019 (engelsk)Inngår i: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, artikkel-id 47800Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

To be able to produce highly oriented and strong fibers from polymer solutions, a high elongational rate during the fiber-forming process is necessary. In the air-gap spinning process, a high elongational rate is realized by employing a high draw ratio, the ratio between take-up and extrusion velocity. Air-gap spinning of lignin–cellulose ionic-liquid solutions renders fibers that are promising to use as carbon fiber precursors. To further improve their mechanical properties, the polymer orientation should be maximized. However, achieving high draw ratios is limited by spinning instabilities that occur at high elongational rates. The aim of this experimental study is to understand the link between solution properties and the critical draw ratio during air-gap spinning. A maximum critical draw ratio with respect to temperature is found. Two mechanisms that limit the critical draw ratio are proposed, cohesive breach and draw resonance, the latter identified from high-speed videos. The two mechanisms clearly correlate with different temperature regions. The results from this work are not only of value for future work within the studied system but also for the design of air-gap spinning processes in general. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47800.

sted, utgiver, år, opplag, sider
John Wiley and Sons Inc. , 2019. artikkel-id 47800
Emneord [en]
cellulose and other wood products, extrusion, fibers, manufacturing, viscosity and viscoelasticity, Air, Carbon fibers, Cellulose, High speed cameras, Ionic liquids, Lignin, Manufacture, Wood, Carbon fiber precursors, Extrusion velocity, High draw ratios, High-speed video, Solution property, Spinning process, Temperature regions, Viscosity and viscoelasticities, Spinning (fibers)
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-38493DOI: 10.1002/app.47800Scopus ID: 2-s2.0-85063743075OAI: oai:DiVA.org:ri-38493DiVA, id: diva2:1313530
Tilgjengelig fra: 2019-05-03 Laget: 2019-05-03 Sist oppdatert: 2019-06-18bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Bengtsson, JennyJedvert, KerstinKöhnke, Tobias

Søk i DiVA

Av forfatter/redaktør
Bengtsson, JennyJedvert, KerstinKöhnke, Tobias
Av organisasjonen
I samme tidsskrift
Journal of Applied Polymer Science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 7 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7