Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Electrodeposition of Ni high P composite coatings containing nano and submicro ceramic particles
Jönköping University, Sweden.
Jönköping University, Sweden.
RISE - Research Institutes of Sweden, Säkerhet och transport, Elektronik. Jönköping University, Sweden.ORCID-id: 0000-0002-7095-1907
Jönköping University, Sweden.
2017 (engelsk)Inngår i: EUROCORR 2017 - The Annual Congress of the European Federation of Corrosion, 20th International Corrosion Congress and Process Safety Congress 2017, Czech Association of Corrosion Engineers , 2017Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In this study, electrodeposition of Ni-P composite coatings has been carried out to investigate the possibility of replacing hard chromium coatings. Therefore, electrodeposition of Ni-P based composite coating with different SiC particle size (50 nm, 100 nm and 500 nm) or B4C (500 nm) was performed. The coating's composition was evaluated by energy dispersive spectroscopy (EDS), microhardness of the coatings was measured by Vickers indentor and polarization measurements were carried out to study the corrosion behavior of the coatings. The results showed that B4C particles can codeposit in higher percent respect to SiC ones. Ceramic particles increased microhardness of Ni-P coatings to 700HV0.01. The polarization behavior of all the coatings in 3.5% NaCl was similar in as plated state proving that particles did not hindered the passive behaviour. Finally, the effect of heat-treatment (at 400 ºC for 1 hour) on the coating's properties was studied to compare the contribution of particles and heat-treatment on mechanical and corrosion properties of the coatings. Heat-treatment increased the coating's microhardness and changed the anodic polarization behavior of the coatings respect to the as plated conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.

sted, utgiver, år, opplag, sider
Czech Association of Corrosion Engineers , 2017.
Emneord [en]
B4C, Microhardness, Ni-P electrodeposition, Polarization, SiC, Boron carbide, Ceramic materials, Corrosive effects, Electrodeposition, Electrodes, Energy dispersive spectroscopy, Hard coatings, Heat treatment, Nickel compounds, Particle size, Phosphorus compounds, Silicon carbide, Silicon compounds, Sodium chloride, Corrosion behavior, Effect of heat treatments, Energy dispersive spectroscopies (EDS), Mechanical and corrosion properties, Ni-P based composite coatings, Polarization behavior, Polarization measurements, SiC particle size, Composite coatings
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-38112Scopus ID: 2-s2.0-85052306013OAI: oai:DiVA.org:ri-38112DiVA, id: diva2:1294735
Konferanse
Joint European Corrosion Congress 2017, EUROCORR 2017 and 20th International Corrosion Congress and Process Safety Congress 2017, 3 September 2017 through 7 September 2017
Tilgjengelig fra: 2019-03-08 Laget: 2019-03-08 Sist oppdatert: 2020-01-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Person

Leisner, Peter

Søk i DiVA

Av forfatter/redaktør
Leisner, Peter
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 146 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.44.0