Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modeling reservoir computing with the discrete nonlinear Schrödinger equation
KTH Royal Institute of Technology, Sweden.
RISE - Research Institutes of Sweden, ICT, SICS. KTH Royal Institute of Technology, Sweden.ORCID-id: 0000-0001-7949-1815
KTH Royal Institute of Technology, Sweden.
2018 (engelsk)Inngår i: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 98, nr 5, artikkel-id 052101Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We formulate, using the discrete nonlinear Schrödinger equation (DNLS), a general approach to encode and process information based on reservoir computing. Reservoir computing is a promising avenue for realizing neuromorphic computing devices. In such computing systems, training is performed only at the output level by adjusting the output from the reservoir with respect to a target signal. In our formulation, the reservoir can be an arbitrary physical system, driven out of thermal equilibrium by an external driving. The DNLS is a general oscillator model with broad application in physics, and we argue that our approach is completely general and does not depend on the physical realization of the reservoir. The driving, which encodes the object to be recognized, acts as a thermodynamic force, one for each node in the reservoir. Currents associated with these thermodynamic forces in turn encode the output signal from the reservoir. As an example, we consider numerically the problem of supervised learning for pattern recognition, using as a reservoir a network of nonlinear oscillators.

sted, utgiver, år, opplag, sider
2018. Vol. 98, nr 5, artikkel-id 052101
Emneord [en]
Encoding (symbols), Oscillators (mechanical), Pattern recognition, Broad application, Neuromorphic computing, Non-linear oscillators, Physical realization, Process information, Reservoir Computing, Thermal equilibriums, Thermodynamic forces, Nonlinear equations
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-36439DOI: 10.1103/PhysRevE.98.052101Scopus ID: 2-s2.0-85056391374OAI: oai:DiVA.org:ri-36439DiVA, id: diva2:1265106
Merknad

Funding details: Energimyndigheten, STEM P40147-1; Funding details: NSC; Funding details: Vetenskapsrådet, VR, VR 2016-05980; Funding details: Vetenskapsrådet, VR, VR 2016-01961; Funding details: Vetenskapsrådet, VR, VR 2015-04608; Funding details: Kungliga Tekniska Högskolan, KTH, HPC2N; Funding details: Umeå Universitet; Funding details: Linköpings Universitet,

Tilgjengelig fra: 2018-11-22 Laget: 2018-11-22 Sist oppdatert: 2019-12-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Boman, Magnus

Søk i DiVA

Av forfatter/redaktør
Boman, Magnus
Av organisasjonen
I samme tidsskrift
Physical review. E

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 15 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10