Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic blood glucose prediction with confidence using recurrent neural networks
Chalmers University of Technology, Sweden.ORCID-id: 0000-0002-5032-4367
University of Gothenburg, Sweden.
Sahlgrenska University Hospital, Sweden.
Chalmers University of Technology, Sweden.
Vise andre og tillknytning
2018 (engelsk)Inngår i: CEUR Workshop Proceedings, 2018, s. 64-68Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Low-cost sensors continuously measuring blood glucose levels in intervals of a few minutes and mobile platforms combined with machine-learning (ML) solutions enable personalized precision health and disease management. ML solutions must be adapted to different sensor technologies, analysis tasks and individuals. This raises the issue of scale for creating such adapted ML solutions. We present an approach for predicting blood glucose levels for diabetics up to one hour into the future. The approach is based on recurrent neural networks trained in an end-to-end fashion, requiring nothing but the glucose level history for the patient. The model outputs the prediction along with an estimate of its certainty, helping users to interpret the predicted levels. The approach needs no feature engineering or data pre-processing, and is computationally inexpensive.

sted, utgiver, år, opplag, sider
2018. s. 64-68
Emneord [en]
Blood, Data handling, Forecasting, Glucose, Health care, Learning systems, Blood glucose level, Data preprocessing, Disease management, Feature engineerings, Low-cost sensors, Mobile platform, Model outputs, Sensor technologies, Recurrent neural networks
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-35908Scopus ID: 2-s2.0-85051031690OAI: oai:DiVA.org:ri-35908DiVA, id: diva2:1261470
Konferanse
3rd International Workshop on Knowledge Discovery in Healthcare Data, KDH@IJCAI-ECAI 2018, 13 July 2018
Tilgjengelig fra: 2018-11-07 Laget: 2018-11-07 Sist oppdatert: 2023-06-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Scopushttp://ceur-ws.org/Vol-2148/paper10.pdf

Person

Martinsson, JohnMogren, Olof

Søk i DiVA

Av forfatter/redaktør
Martinsson, JohnMogren, Olof
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 806 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0