Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Phenomenological friction model in deep drawing of aluminum sheet metals
RISE - Research Institutes of Sweden, Swerea, Swerea IVF AB, Tillverkningsprocesser.
University College West, Sweden.
2018 (engelsk)Inngår i: IOP Conference Series: Materials Science and Engineering, ISSN 1757-8981, E-ISSN 1757-899X, Vol. 418, nr 1Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Friction is an important parameter in sheet metal forming since it influences the flow of material in the process. Consequently, it is also an important parameter in the design process of new stamping dies when numerical simulations are utilized. Today, the most commonly used friction model in forming simulations is Coulomb’s friction which is a strong simplification of the tribological system conditions and a contributory cause of discrepancy between simulation and physical experiments. There are micromechanical models available but with an inherent complexity that results in limited transparency for users. The objective in this study was to design a phenomenological friction model with a natural level of complexity when Coulomb’s friction is inadequate. The local friction model considers implicit properties of tool and sheet surface topography, lubricant viscosity, sheet metal hardness and strain, and process parameters such as sliding speed and contact pressure. The model was calibrated in a Bending-Under-Tension test (BUT) and the performance was evaluated in a cross shaped geometry (X-die). The results show a significant improvement of the simulation precision and provide the user a transparent tribological system. © Published under licence by IOP Publishing Ltd.

sted, utgiver, år, opplag, sider
Institute of Physics Publishing , 2018. Vol. 418, nr 1
Emneord [en]
Deep drawing; Drawing (forming); Friction; Surface topography; Tensile testing; Tribology, Bending under tension tests; Coulomb’s frictions; Forming simulations; Inherent complexity; Lubricant viscosity; Micromechanical model; Physical experiments; Tribological systems, Sheet metal
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-35540DOI: 10.1088/1757-899X/418/1/012097Scopus ID: 2-s2.0-85054208336OAI: oai:DiVA.org:ri-35540DiVA, id: diva2:1259561
Merknad

Conference of 37th International Deep Drawing Research Group Conference - Forming of High Performance Sheet Materials and Components, IDDRG 2018 ; Conference Date: 3 June 2018 Through 7 June 2018; Conference Code:139914

Tilgjengelig fra: 2018-10-30 Laget: 2018-10-30 Sist oppdatert: 2018-12-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus
Av organisasjonen
I samme tidsskrift
IOP Conference Series: Materials Science and Engineering

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 12 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7