Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core
Chalmers University of Technology, Sweden.ORCID-id: 0000-0002-0558-942X
University of Borås, Sweden.
RISE - Research Institutes of Sweden (2017-2019), Material och produktion, IVF.ORCID-id: 0000-0002-1950-8762
Chalmers University of Technology, Sweden.
Vise andre og tillknytning
2018 (engelsk)Inngår i: npj Flexible Electronics, Vol. 2, artikkel-id 9Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Recent advances in ubiquitous low-power electronics call for the development of light-weight and flexible energy sources. The textile format is highly attractive for unobtrusive harvesting of energy from e.g., biomechanical movements. Here, we report the manufacture and characterisation of fully textile piezoelectric generators that can operate under wet conditions. We use a weaving loom to realise textile bands with yarns of melt-spun piezoelectric microfibres, that consist of a conducting core surrounded by β-phase poly(vinylidene fluoride) (PVDF), in the warp direction. The core-sheath constitution of the piezoelectric microfibres results in a—for electronic textiles—unique architecture. The inner electrode is fully shielded from the outer electrode (made up of conducting yarns that are integrated in the weft direction) which prevents shorting under wet conditions. As a result, and in contrast to other energy harvesting textiles, we are able to demonstrate piezoelectric fabrics that do not only continue to function when in contact with water, but show enhanced performance. The piezoelectric bands generate an output of several volts at strains below one percent. We show that integration into the shoulder strap of a laptop case permits the continuous generation of four microwatts of power during a brisk walk. This promising performance, combined with the fact that our solution uses scalable materials and well-established industrial manufacturing methods, opens up the possibility to develop wearable electronics that are powered by piezoelectric textiles.

sted, utgiver, år, opplag, sider
2018. Vol. 2, artikkel-id 9
Emneord [en]
Electrical and electronic engineering, Energy harvesting, Materials for devices
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-34718DOI: 10.1038/s41528-018-0022-4OAI: oai:DiVA.org:ri-34718DiVA, id: diva2:1238953
Tilgjengelig fra: 2018-08-15 Laget: 2018-08-15 Sist oppdatert: 2024-06-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Lund, AnjaNilsson, ErikHagström, Bengt

Søk i DiVA

Av forfatter/redaktør
Lund, AnjaNilsson, ErikHagström, Bengt
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 74 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0