Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Boosting the capacity of all-organic paper supercapacitors using wood derivatives
RISE - Research Institutes of Sweden (2017-2019), ICT, Acreo. Linköping University, Sweden.ORCID-id: 0000-0002-2904-7238
Linköping University, Sweden.
Linköping University, Sweden.
Linköping University, Sweden; Stellenbosch University, South Africa.
2018 (engelsk)Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 6, nr 1, s. 145-152Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Printed and flexible organic electronics is a steadily expanding field of research and applications. One of the most attractive features of this technology is the possibility of large area and high throughput production to form low-cost electronics on different flexible substrates. With an increasing demand for sustainable energy production, low-cost and large volume technologies to store high-quality energy become equally important. These devices should be environmentally friendly with respect to their entire life cycle. Supercapacitors and batteries based on paper hold great promise for such applications due to the low cost and abundance of cellulose and other forest-derived components. We report a thick-film paper-supercapacitor system based on cellulose nanofibrils, the mixed ion-electron conducting polymer PEDOT: PSS and sulfonated lignin. We demonstrate that the introduction of sulfonated lignin into the cellulose-conducting polymer system increases the specific capacitance from 110 to 230 F g(-1) and the areal capacitance from 160 mF cm(-2) to 1 F cm(-2). By introducing lignosulfonate also into the electrolyte solution, equilibrium, with respect to the concentration of the redox molecule, was established between the electrode and the electrolyte, thus allowing us to perform beyond 700 charge/discharge cycles with no observed decrease in performance.

sted, utgiver, år, opplag, sider
2018. Vol. 6, nr 1, s. 145-152
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-33379DOI: 10.1039/c7ta06810gScopus ID: 2-s2.0-85038626009OAI: oai:DiVA.org:ri-33379DiVA, id: diva2:1187272
Tilgjengelig fra: 2018-03-02 Laget: 2018-03-02 Sist oppdatert: 2023-06-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Edberg, Jesper

Søk i DiVA

Av forfatter/redaktør
Edberg, Jesper
Av organisasjonen
I samme tidsskrift
Journal of Materials Chemistry A

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 68 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.41.0