Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting session length in media streaming
RISE - Research Institutes of Sweden, ICT, SICS.ORCID-id: 0000-0002-8180-7521
Pandora Media Inc, USA.
Pandora Media Inc, USA.
Pandora Media Inc, USA.
2017 (engelsk)Inngår i: SIGIR 2017 - Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017, s. 977-980Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Session length is a very important aspect in determining a user's satisfaction with a media streaming service. Being able to predict how long a session will last can be of great use for various downstream tasks, such as recommendations and ad scheduling. Most of the related literature on user interaction duration has focused on dwell time for websites, usually in the context of approximating post-click satisfaction either in search results, or display ads. In this work we present the first analysis of session length in a mobile-focused online service, using a real world data-set from a major music streaming service.We use survival analysis techniques to show that the characteristics of the length distributions can differ significantly between users, and use gradient boosted trees with appropriate objectives to predict the length of a session using only information available at its beginning. Our evaluation on real world data illustrates that our proposed technique outperforms the considered baseline. © 2017 Copyright held by the owner/author(s).

sted, utgiver, år, opplag, sider
2017. s. 977-980
Emneord [en]
Dwell Time, Session Length, Survival Analysis, User Behavior, Behavioral research, Bioinformatics, Forecasting, Information retrieval, Trees (mathematics), Length distributions, Media streaming services, User behaviors, User interaction, User's satisfaction, Media streaming
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-33211DOI: 10.1145/3077136.3080695Scopus ID: 2-s2.0-85029395373ISBN: 9781450350228 (tryckt)OAI: oai:DiVA.org:ri-33211DiVA, id: diva2:1179212
Konferanse
40th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2017, 7 August 2017 through 11 August 2017
Tilgjengelig fra: 2018-01-31 Laget: 2018-01-31 Sist oppdatert: 2019-01-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Vasiloudis, Theodore

Søk i DiVA

Av forfatter/redaktør
Vasiloudis, Theodore
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 5 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7