Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ion beam evaluation of silicon carbide membrane structures intended for particle detectors
Lund University, Sweden.
Linköping University, Sweden; Graphensic AB, Sweden.
RISE., Swedish ICT, Acreo.
Linköping University, Sweden; Graphensic AB, Sweden.
Vise andre og tillknytning
2016 (engelsk)Inngår i: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, ISSN 0168-583X, E-ISSN 1872-9584, Vol. 371, s. 132-136Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Thin ion transmission detectors can be used as a part of a telescope detector for mass and energy identification but also as a pre-cell detector in a microbeam system for studies of biological effects from single ion hits on individual living cells. We investigated a structure of graphene on silicon carbide (SiC) with the purpose to explore a thin transmission detector with a very low noise level and having mechanical strength to act as a vacuum window. In order to reach very deep cavities in the SiC wafers for the preparation of the membrane in the detector, we have studied the Inductive Coupled Plasma technique to etch deep circular cavities in 325 μm prototype samples. By a special high temperature process the outermost layers of the etched SiC wafers were converted into a highly conductive graphitic layer. The produced cavities were characterized by electron microscopy, optical microscopy and proton energy loss measurements. The average membrane thickness was found to be less than 40 μm, however, with a slightly curved profile. Small spots representing much thinner membrane were also observed and might have an origin in crystal defects or impurities. Proton energy loss measurement (also called Scanning Transmission Ion Microscopy, STIM) is a well suited technique for this thickness range. This work presents the first steps of fabricating a membrane structure of SiC and graphene which may be an attractive approach as a detector due to the combined properties of SiC and graphene in a monolithic materials structure.

sted, utgiver, år, opplag, sider
2016. Vol. 371, s. 132-136
Emneord [en]
Graphene, ICP, Nuclear microprobe, Transmission detector, Crystal defects, Crystal impurities, Energy dissipation, Ion beams, Ions, Membrane structures, Membranes, Silicon detectors, Silicon wafers, Biological effects, High temperature process, Inductive coupled plasma, Monolithic material, Nuclear microprobes, Scanning transmission ion microscopy, Silicon carbides (SiC), Transmission detectors, Silicon carbide
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-32590DOI: 10.1016/j.nimb.2015.10.045Scopus ID: 2-s2.0-84960326383OAI: oai:DiVA.org:ri-32590DiVA, id: diva2:1155337
Tilgjengelig fra: 2017-11-07 Laget: 2017-11-07 Sist oppdatert: 2019-06-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus
Av organisasjonen
I samme tidsskrift
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 16 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10