Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Four levels to assess anchorage capacity of corroded reinforcement in concrete
Chalmers University of Technology, Sweden.
Chalmers University of Technology, Sweden.
RISE - Research Institutes of Sweden, Samhällsbyggnad, CBI Betonginstitutet. Chalmers University of Technology, Sweden.ORCID-id: 0000-0003-4565-5345
Chalmers University of Technology, Sweden.
2017 (engelsk)Inngår i: Engineering structures, ISSN 0141-0296, E-ISSN 1873-7323, Vol. 147, s. 434-447Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Corrosion of reinforcement affects anchorage capacity. In this study, four levels of analyses were, for the first time, compared with each other and to tests of naturally corroded beams. In the most advanced approach, three-dimensional non-linear finite element (3D NLFE) analyses employing previously developed bond and corrosion models were carried out. These analyses agreed well with the experiments in terms of crack pattern and maximum load capacity. The next approach consisted of 3D NLFE analyses with a pre-defined bond-slip relation between concrete and reinforcement, resulting in reasonable agreement; however, the anchorage capacity was overestimated and the crack pattern deviated from the experiments. At the next level, the bond-slip relation was used together with a measured available anchorage length, and the anchorage capacity was obtained by numerically solving the one-dimensional differential equation; the results were reasonably close to the experiments. In the most simplified approach, a constant bond stress was assumed together with the available anchorage length measured, which underestimated the capacities. In conclusion, the more advanced analyses provide reliable information regarding the structural behaviour, while the two simplified methods are well suited for use in practice.

sted, utgiver, år, opplag, sider
2017. Vol. 147, s. 434-447
Emneord [en]
Anchorage, Assessment, Bond, FE analysis, Modelling, Natural corrosion, Reinforced concrete, Anchorages (concrete construction), Anchorages (foundations), Bond strength (materials), Bonding, Concretes, Corrosion, Cracks, Differential equations, Finite element method, Models, Corroded reinforcement, Corrosion of reinforcement, Levels of analysis, Maximum load capacity, Non-linear finite elements, Structural behaviour, Concrete reinforcements
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-30802DOI: 10.1016/j.engstruct.2017.06.024Scopus ID: 2-s2.0-85020549063OAI: oai:DiVA.org:ri-30802DiVA, id: diva2:1138760
Merknad

Funding details: Chalmers Tekniska Högskola; Funding text: This work was undertaken at Chalmers University of Technology, Division of Structural Engineering, Concrete Structures. The authors would like to acknowledge the funding from the Swedish Transport Administration (Trafikverket).

Tilgjengelig fra: 2017-09-06 Laget: 2017-09-06 Sist oppdatert: 2019-07-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Zandi, Kamyab

Søk i DiVA

Av forfatter/redaktør
Zandi, Kamyab
Av organisasjonen
I samme tidsskrift
Engineering structures

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 23 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.8