Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Behaviour of monolithic and laminated glass exposed to radiant heating
Ghent University, Belgium.
RISE - Research Institutes of Sweden, Säkerhet och transport, Safety.
RISE - Research Institutes of Sweden, Säkerhet och transport, Safety.ORCID-id: 0000-0002-4551-1045
RISE - Research Institutes of Sweden, Säkerhet och transport, Safety.ORCID-id: 0000-0001-5879-7305
Vise andre og tillknytning
2017 (engelsk)Inngår i: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526, Vol. 130, s. 212-229Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Glass is seeing a growing interest as a structural material as a result of its relatively good strength to weight ratio and the obvious aesthetic benefits of its use in buildings. However due to the sensitivity of glass to thermal shock and the considerably temperature-dependent behaviour of interlayer materials as a result of their visco-elastic nature, the mechanical behaviour of laminated glass will be severely influenced by exposure to fire. Relatively little research has been conducted in the past to study the response of load bearing structural glass, and laminated glass in particular to radiant heating. This paper represents an effort to try to understand the effects of through depth radiation absorption and temperature conduction through laminated glass with a view to ultimately developing a model for studying load bearing glass exposed to elevated temperatures, such as those that would be expected in a fire. The paper reports on an experimental research programme in which several monolithic and laminated glass configurations were exposed to a radiant heat flux to study the different phenomena that occur upon exposure to fire conditions, including the ratios of absorbed, transmitted and reflected heat flux to the incident heat flux. The paper then presents a numerical heat transfer model which is developed based on these experimental results and that is able to determine the evolution of the temperature profile as a result of a given incident heat flux. The effectiveness of the heat transfer model is demonstrated through comparison with the temperatures measured during the experimental work.

sted, utgiver, år, opplag, sider
2017. Vol. 130, s. 212-229
Emneord [en]
Beam, FEM, Fire, Polymer interlayer, Radiation, Structural glass, Finite element method, Fires, Glass, Heat radiation, Heat transfer, Laminating, Radiant heating, Radiation effects, Experimental research, Numerical heat transfer, Radiation absorption, Strength to weight ratio, Temperature dependent, Temperature profiles, Heat flux
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-31067DOI: 10.1016/j.conbuildmat.2016.09.139Scopus ID: 2-s2.0-84997107237OAI: oai:DiVA.org:ri-31067DiVA, id: diva2:1138593
Tilgjengelig fra: 2017-09-06 Laget: 2017-09-06 Sist oppdatert: 2019-06-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Lange, DavidHonfi, Daniel

Søk i DiVA

Av forfatter/redaktør
Lange, DavidHonfi, Daniel
Av organisasjonen
I samme tidsskrift
Construction and Building Materials

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 39 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.10