Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Real-time constant monitoring of fall risk index by means of fully-wireless insoles
Spring Techno GmbH & Co, Germany..
Spring Techno GmbH & Co, Germany..
Universitat Autònoma de Barcelona, Spain.
Universitat Autònoma de Barcelona, Spain.
Vise andre og tillknytning
2017 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Constant monitoring of gait in real life conditions is considered the best way to assess Fall Risk Index (FRI) since most falls happen out of the ideal conditions in which clinicians are currently analyzing the patient's behavior. This paper presents the WIISEL platform and results obtained through the use of the first full-wireless insole devices that can measure almost all gait related data directly on the feet (not in the upper part of the body as most existing wearable solutions). The platform consists of a complete tool-chain: insoles, smartphone & app, server & analysis tool, FRI estimation and user access. Results are obtained by combining parameters in a personalized way to build individual fall risk index assessed by experts with the help of data analytics. New FRI has been compared with standards that validate the quality of its prediction in a statistically significant way. That qualitatively relevant information is being provided to the platform users, being either end-users/patients, relatives or caregivers and the related clinicians to ideally assess about their long term evolution. © 2017 The authors and IOS Press.

sted, utgiver, år, opplag, sider
2017. s. 193-197
Emneord [en]
Fall risk, Fall Risk Index (FRI), Gait analysis, Wireless insole, caregiver, doctor patient relation, foot, gait, human, monitoring, prediction, relative, smartphone
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-31175DOI: 10.3233/978-1-61499-761-0-193Scopus ID: 2-s2.0-85019478635ISBN: 9781614997603 (tryckt)OAI: oai:DiVA.org:ri-31175DiVA, id: diva2:1135569
Konferanse
14th International Conference on Wearable Micro and Nano Technologies for Personalized Health, pHealth 2017. 14 May 2017 through 16 May 2017
Tilgjengelig fra: 2017-08-23 Laget: 2017-08-23 Sist oppdatert: 2023-05-16bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Rusu, Cristina

Søk i DiVA

Av forfatter/redaktør
Rusu, Cristina
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 162 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.44.0