Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adsorption and mobility of a lipase at a hydrophobic surface in the presence of surfactants
RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.ORCID-id: 0000-0002-3350-0242
2006 (engelsk)Inngår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 22, s. 5810-5817Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

With the aim of being able to manipulate the processes involved in interfacial catalysis, we have studied the effects of a mixture of nonionic/anionic surfactants, C12E6/LAS (1:2 mol %), on the adsorption and surface mobility of a lipase obtained from Thermomyces lanuginosus (TLL). Surface plasmon resonance (SPR) and ellipsometry were used to analyze the competitive adsorption process between surfactants and TLL onto hydrophobic model surfaces intended to mimic an oily substrate for the lipase. We obtained the surface diffusion coefficient of a fluorescently labeled TLL variant on silica silanized with octadecyltrichlorosilane (OTS) by fluorescence recovery after photobleaching (FRAP) on a confocal laser scanning microscope. By means of ellipsometry we calibrated the fluorescence intensity with the surface density of the lipase. The TLL diffusion was measured at different surface densities of the enzyme and at two time intervals after coadsorption with different concentrations of C12E6/LAS. The surfactant concentrations were chosen to represent concentrations below the critical micelle concentration (CMC), in the CMC region, and above the CMC. The apparent TLL surface diffusion was extrapolated to infinite surface dilution, D0. We found that the presence of surfactants strongly modulated the surface mobility of TLL: with D0 = 0.8 x 10-11 cm2/s without surfactants and D0 = 13.1 x 10-11 cm2/s with surfactants above the CMC. The increase in lipase mobility on passing the CMC was also accompanied by a 2-fold increase in the mobile fraction of TLL. SPR analysis revealed that surface bound TLL was displaced by C12E6/LAS in a concentration-dependent manner, suggesting that the observed increase in surface mobility imparts bulk-mediated diffusion and so-called rebinding of TLL to the surface. Our combined results on lipase/surfactant competitive adsorption and lipase surface mobility show how surfactants may play an important role in regulating interfacial catalysis from physiological digestion to technical applications such as detergency.

sted, utgiver, år, opplag, sider
2006. Vol. 22, s. 5810-5817
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-27154OAI: oai:DiVA.org:ri-27154DiVA, id: diva2:1054158
Tilgjengelig fra: 2016-12-08 Laget: 2016-12-08 Sist oppdatert: 2023-12-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Elofsson, Ulla

Søk i DiVA

Av forfatter/redaktør
Elofsson, Ulla
Av organisasjonen
I samme tidsskrift
Langmuir

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 19 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0