Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Silica nanoparticle sols. Part 3: Monitoring the state of agglomeration at the air/water interface using the Langmuir-Blodgett technique
RISE., SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, YKI – Ytkemiska institutet.
2009 (engelsk)Inngår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 336, nr 2, s. 584-591Artikkel i tidsskrift (Fagfellevurdert)
Abstract [en]

Langmuir–Blodgett films were prepared at the air/water interface from dispersions of hydrophilic and partially, hydrophobically modified industrially manufactured silica nanoparticles. The hydrophilic particles featured expanded, fairly easily compressible, surface pressure (p)–area (A) isotherms with well defined collapse pressures which appeared to be caused by the formation of loosely structured agglomerates which exhibited elastic behavior at low surface pressure and inelastic behavior at high surface pressure. Lateral electrostatic interparticle interactions seemingly played an important role in this hydrophilic system. This contrasted with the hydrophobically modified particles which were more difficult to disperse in the ethanol/chloroform spreading solvent and appeared to be in the semi-agglomerated state at low surface pressures and exhibited a more difficult to compress compacted film. Both types of particulate films were shown to be sensitive to the spreading environment and changes in pH were found to increase particle agglomeration which drastically reduced the particulate area for the hydrophilic sol but less so, in the case of the moderately hydrophobically modified sol. In general, the LB technique proved to be a useful method to monitor changes in the state of aggregation of nanosized silica particles at the air/water interface. These results also appear to give some support of our ideas, presented in earlier publications [1,2] in which it was suggested that the major role of the hydrophobically modified hydrophilic particles in foaming was to produce an aggregated particulate film surrounding the air/water interface which provides a physical barrier preventing coalescence of bubbles.

sted, utgiver, år, opplag, sider
2009. Vol. 336, nr 2, s. 584-591
Emneord [en]
Langmuir–Blodgett films, silica nanoparticles, surface agglomeration of nanoparticles, hydrophobically modified silica
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-27022DOI: 10.1016/j.jcis.2009.04.039OAI: oai:DiVA.org:ri-27022DiVA, id: diva2:1054026
Merknad
A1987Tilgjengelig fra: 2016-12-08 Laget: 2016-12-08 Sist oppdatert: 2020-12-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst
Av organisasjonen
I samme tidsskrift
Journal of Colloid and Interface Science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 52 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.45.0